Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 124595 by physicstutes last updated on 04/Dec/20

Given that  ω = e^(iθ) , θ≠ nπ, n ∈ N  show that    (1) ((ω^2 −1)/ω) = 2i sin θ   (2) (1 + ω)^n  = 2^n cos^n ((1/2)θ)e^((1/2)(inθ))

$$\mathrm{Given}\:\mathrm{that}\:\:\omega\:=\:{e}^{{i}\theta} ,\:\theta\neq\:{n}\pi,\:{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\left(\mathrm{1}\right)\:\frac{\omega^{\mathrm{2}} −\mathrm{1}}{\omega}\:=\:\mathrm{2}{i}\:\mathrm{sin}\:\theta \\ $$$$\:\left(\mathrm{2}\right)\:\left(\mathrm{1}\:+\:\omega\right)^{{n}} \:=\:\mathrm{2}^{{n}} \mathrm{cos}^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}\left({in}\theta\right)} \\ $$

Answered by Ar Brandon last updated on 04/Dec/20

f(ω)=((ω^2 −1)/ω)=((e^(2iθ) −1)/e^(iθ) )=e^(iθ) −e^(−iθ)            =(cosθ+isinθ)−(cos(−θ)+isin(−θ))           =(cosθ+isinθ)−(cosθ−isinθ)           =2isinθ

$$\mathrm{f}\left(\omega\right)=\frac{\omega^{\mathrm{2}} −\mathrm{1}}{\omega}=\frac{\mathrm{e}^{\mathrm{2i}\theta} −\mathrm{1}}{\mathrm{e}^{\mathrm{i}\theta} }=\mathrm{e}^{\mathrm{i}\theta} −\mathrm{e}^{−\mathrm{i}\theta} \\ $$$$\:\:\:\:\:\:\:\:\:=\left(\mathrm{cos}\theta+\mathrm{isin}\theta\right)−\left(\mathrm{cos}\left(−\theta\right)+\mathrm{isin}\left(−\theta\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\left(\mathrm{cos}\theta+\mathrm{isin}\theta\right)−\left(\mathrm{cos}\theta−\mathrm{isin}\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{2isin}\theta \\ $$

Commented by physicstutes last updated on 04/Dec/20

thats great

$$\mathrm{thats}\:\mathrm{great} \\ $$

Answered by mnjuly1970 last updated on 04/Dec/20

1:ω^2 −1=(cos(2θ)+isin(2θ))−1=2isin(θ)cos(θ)−2sin^2 (θ)     =2isin(θ)[cos(θ)+isin(θ)]   ⇒((ω^2 −1)/ω)=2isin(θ)     corallary :Ω=∫_0 ^(π/2) ln(Im(((ω^2 −1)/(2w))))dθ=−(π/2)ln(2)✓

$$\mathrm{1}:\omega^{\mathrm{2}} −\mathrm{1}=\left({cos}\left(\mathrm{2}\theta\right)+{isin}\left(\mathrm{2}\theta\right)\right)−\mathrm{1}=\mathrm{2}{isin}\left(\theta\right){cos}\left(\theta\right)−\mathrm{2}{sin}^{\mathrm{2}} \left(\theta\right) \\ $$$$\:\:\:=\mathrm{2}{isin}\left(\theta\right)\left[{cos}\left(\theta\right)+{isin}\left(\theta\right)\right] \\ $$$$\:\Rightarrow\frac{\omega^{\mathrm{2}} −\mathrm{1}}{\omega}=\mathrm{2}{isin}\left(\theta\right) \\ $$$$\:\:\:{corallary}\::\Omega=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({Im}\left(\frac{\omega^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{w}}\right)\right){d}\theta=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\checkmark \\ $$

Answered by Ar Brandon last updated on 04/Dec/20

f(ω)=(1+ω)^n =(1+cosθ+isinθ)^n            =(2cos^2 (θ/2)+2isin(θ/2)cos(θ/2))^n            =[2cos(θ/2)(cos(θ/2)+isin(θ/2))]^n            =2^n cos^n (θ/2)e^(i((nθ)/2))

$$\mathrm{f}\left(\omega\right)=\left(\mathrm{1}+\omega\right)^{\mathrm{n}} =\left(\mathrm{1}+\mathrm{cos}\theta+\mathrm{isin}\theta\right)^{\mathrm{n}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left(\mathrm{2cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}+\mathrm{2isin}\frac{\theta}{\mathrm{2}}\mathrm{cos}\frac{\theta}{\mathrm{2}}\right)^{\mathrm{n}} \\ $$$$\:\:\:\:\:\:\:\:\:=\left[\mathrm{2cos}\frac{\theta}{\mathrm{2}}\left(\mathrm{cos}\frac{\theta}{\mathrm{2}}+\mathrm{isin}\frac{\theta}{\mathrm{2}}\right)\right]^{\mathrm{n}} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{2}^{\mathrm{n}} \mathrm{cos}^{\mathrm{n}} \frac{\theta}{\mathrm{2}}\mathrm{e}^{\mathrm{i}\frac{\mathrm{n}\theta}{\mathrm{2}}} \\ $$

Commented by Ar Brandon last updated on 04/Dec/20

1=cos^2 (θ/2)+sin^2 (θ/2)  cosθ=cos^2 (θ/2)−sin^2 (θ/2)  sinθ=2sin(θ/2)cos(θ/2)  cos(θ/2)+isin(θ/2)=e^(i(θ/2))

$$\mathrm{1}=\mathrm{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}+\mathrm{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\mathrm{cos}\theta=\mathrm{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}−\mathrm{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\mathrm{sin}\theta=\mathrm{2sin}\frac{\theta}{\mathrm{2}}\mathrm{cos}\frac{\theta}{\mathrm{2}} \\ $$$$\mathrm{cos}\frac{\theta}{\mathrm{2}}+\mathrm{isin}\frac{\theta}{\mathrm{2}}=\mathrm{e}^{\mathrm{i}\frac{\theta}{\mathrm{2}}} \\ $$

Answered by mnjuly1970 last updated on 04/Dec/20

2.(1+ω)^n =(1+cos(θ)+isin(θ))^n        =(2cos^2 ((θ/2))+2isin((θ/2))cos((θ/2)))^n   =2^n (cos^n ((θ/2)))(cos((θ/2))+isin((θ/2)))^n   =2^n cos^n ((θ/2))e^(i(((nθ)/2)))  ✓

$$\mathrm{2}.\left(\mathrm{1}+\omega\right)^{{n}} =\left(\mathrm{1}+{cos}\left(\theta\right)+{isin}\left(\theta\right)\right)^{{n}} \\ $$$$\:\:\:\:\:=\left(\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)+\mathrm{2}{isin}\left(\frac{\theta}{\mathrm{2}}\right){cos}\left(\frac{\theta}{\mathrm{2}}\right)\right)^{{n}} \\ $$$$=\mathrm{2}^{{n}} \left({cos}^{{n}} \left(\frac{\theta}{\mathrm{2}}\right)\right)\left({cos}\left(\frac{\theta}{\mathrm{2}}\right)+{isin}\left(\frac{\theta}{\mathrm{2}}\right)\right)^{{n}} \\ $$$$=\mathrm{2}^{{n}} {cos}^{{n}} \left(\frac{\theta}{\mathrm{2}}\right){e}^{{i}\left(\frac{{n}\theta}{\mathrm{2}}\right)} \:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com