Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124061 by Bird last updated on 30/Nov/20

find ∫_0 ^∞  ((xarctanx)/((x^(2 ) +1)^2 ))dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{xarctanx}}{\left({x}^{\mathrm{2}\:} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Answered by mnjuly1970 last updated on 30/Nov/20

Ω=[((−1)/(2(x^2 +1)))tan^(−1) (x)]_0 ^∞ +(1/2)∫_0 ^( ∞) (1/((x^2 +1)^2 ))dx    =^((x^2 =ξ)) (1/4)∫_0 ^( ∞) (ξ^((−1)/2) /((1+ξ)^2 ))dξ=(1/4)β((1/2),(3/2))  =(1/4) ((Γ((1/2))(1/2)Γ((1/2)))/(Γ(2)))=(π/8)  ✓

$$\Omega=\left[\frac{−\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{tan}^{−\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\:\:\overset{\left({x}^{\mathrm{2}} =\xi\right)} {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\infty} \frac{\xi^{\frac{−\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}+\xi\right)^{\mathrm{2}} }{d}\xi=\frac{\mathrm{1}}{\mathrm{4}}\beta\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}\right)}=\frac{\pi}{\mathrm{8}}\:\:\checkmark \\ $$

Answered by Dwaipayan Shikari last updated on 30/Nov/20

∫_0 ^∞ ((xtan^(−1) x)/((x^2 +1)^2 ))dx          tan^(−1) x=θ⇒(1/(1+x^2 ))=(dθ/dx)  =∫_0 ^(π/2) ((θtanθ)/(sec^2 θ))dθ  =−(θ/4)[cos(2θ)]_0 ^(π/2)  +(1/8)[sin2θ]_0 ^(π/2)   =(π/8)

$$\int_{\mathrm{0}} ^{\infty} \frac{{xtan}^{−\mathrm{1}} {x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:\:\:\:\:\:\:\:\:{tan}^{−\mathrm{1}} {x}=\theta\Rightarrow\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{{d}\theta}{{dx}} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\theta{tan}\theta}{{sec}^{\mathrm{2}} \theta}{d}\theta \\ $$$$=−\frac{\theta}{\mathrm{4}}\left[{cos}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\frac{\mathrm{1}}{\mathrm{8}}\left[{sin}\mathrm{2}\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com