Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 124001 by Don08q last updated on 30/Nov/20

A variable point P(x, y) moves on the  curve  xy = 6 and R is the point which   divides the straight line that joins the  points A(−2, 0)  and  B(0, −1) in the  ratio 3:1, internally. Find the locus of  PR.

$$\mathrm{A}\:\mathrm{variable}\:\mathrm{point}\:{P}\left({x},\:{y}\right)\:\mathrm{moves}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\:{xy}\:=\:\mathrm{6}\:\mathrm{and}\:{R}\:\mathrm{is}\:\mathrm{the}\:\mathrm{point}\:\mathrm{which}\: \\ $$$$\mathrm{divides}\:\mathrm{the}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{that}\:\mathrm{joins}\:\mathrm{the} \\ $$$$\mathrm{points}\:{A}\left(−\mathrm{2},\:\mathrm{0}\right)\:\:\mathrm{and}\:\:{B}\left(\mathrm{0},\:−\mathrm{1}\right)\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{ratio}\:\mathrm{3}:\mathrm{1},\:\mathrm{internally}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of} \\ $$$${PR}. \\ $$

Answered by liberty last updated on 30/Nov/20

P(x, (6/x)) ⇒AR : RB = 3 : 1  ⇒r^→  = ((a^→ +3b^→ )/(1+3)) =  (((−(1/2))),((      0)) ) +  (((    0)),((−(3/4))) ) =  (((−(1/2))),((−(3/4))) )  R(−(1/2),−(3/4)). Let PR = λ   ⇒(√((x+(1/2))^2 +(y+(3/4))^2 )) = λ ;   ⇒ (x+(1/2))^2 +(y+(3/4))^2 = λ^2  ; put → { ((x=1)),((y=6)) :}  substitute ⇒(1+(1/2))^2 +(6+(3/4))^2 = λ^2   ⇒(9/4)+((729)/(16)) = ((36+729)/(16))=((765)/(16))=λ^2   Thus the locus of PR is      (x+(1/2))^2 +(y+(3/4))^2 = ((765)/(16)).

$${P}\left({x},\:\frac{\mathrm{6}}{{x}}\right)\:\Rightarrow{AR}\::\:{RB}\:=\:\mathrm{3}\::\:\mathrm{1} \\ $$$$\Rightarrow\overset{\rightarrow} {{r}}\:=\:\frac{\overset{\rightarrow} {{a}}+\mathrm{3}\overset{\rightarrow} {{b}}}{\mathrm{1}+\mathrm{3}}\:=\:\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:+\:\begin{pmatrix}{\:\:\:\:\mathrm{0}}\\{−\frac{\mathrm{3}}{\mathrm{4}}}\end{pmatrix}\:=\:\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{3}}{\mathrm{4}}}\end{pmatrix} \\ $$$${R}\left(−\frac{\mathrm{1}}{\mathrm{2}},−\frac{\mathrm{3}}{\mathrm{4}}\right).\:{Let}\:{PR}\:=\:\lambda\: \\ $$$$\Rightarrow\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:=\:\lambda\:;\: \\ $$$$\Rightarrow\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} =\:\lambda^{\mathrm{2}} \:;\:{put}\:\rightarrow\begin{cases}{{x}=\mathrm{1}}\\{{y}=\mathrm{6}}\end{cases} \\ $$$${substitute}\:\Rightarrow\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{6}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} =\:\lambda^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{9}}{\mathrm{4}}+\frac{\mathrm{729}}{\mathrm{16}}\:=\:\frac{\mathrm{36}+\mathrm{729}}{\mathrm{16}}=\frac{\mathrm{765}}{\mathrm{16}}=\lambda^{\mathrm{2}} \\ $$$${Thus}\:{the}\:{locus}\:{of}\:{PR}\:{is}\: \\ $$$$\:\:\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} =\:\frac{\mathrm{765}}{\mathrm{16}}.\: \\ $$

Commented by Don08q last updated on 30/Nov/20

Thank you very much Sir.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com