Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 123868 by benjo_mathlover last updated on 28/Nov/20

Answered by liberty last updated on 29/Nov/20

we begin from A^3 =A.A^2  and A^2 =8A−13I  gives A^3 =A(8A−13I)=8A^2 −13A                     = 8(8A−13I)−13A                     = 64A −104I−13A = 51A−104I            xA+yI = 51A−104I    we conclude that  { ((x=51)),((y=−104)) :}

$${we}\:{begin}\:{from}\:{A}^{\mathrm{3}} ={A}.{A}^{\mathrm{2}} \:{and}\:{A}^{\mathrm{2}} =\mathrm{8}{A}−\mathrm{13}{I} \\ $$$${gives}\:{A}^{\mathrm{3}} ={A}\left(\mathrm{8}{A}−\mathrm{13}{I}\right)=\mathrm{8}{A}^{\mathrm{2}} −\mathrm{13}{A} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{8}\left(\mathrm{8}{A}−\mathrm{13}{I}\right)−\mathrm{13}{A}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{64}{A}\:−\mathrm{104}{I}−\mathrm{13}{A}\:=\:\mathrm{51}{A}−\mathrm{104}{I} \\ $$$$\:\:\:\:\:\:\:\:\:\:{xA}+{yI}\:=\:\mathrm{51}{A}−\mathrm{104}{I}\: \\ $$$$\:{we}\:{conclude}\:{that}\:\begin{cases}{{x}=\mathrm{51}}\\{{y}=−\mathrm{104}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com