Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123526 by bramlexs22 last updated on 26/Nov/20

  ∫_0 ^∞  ((x arctan x)/((1+x^2 )^2 )) dx ?

$$\:\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{x}\:\mathrm{arctan}\:{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:? \\ $$

Commented by liberty last updated on 26/Nov/20

(π/8) ?

$$\frac{\pi}{\mathrm{8}}\:? \\ $$

Commented by bramlexs22 last updated on 26/Nov/20

how sir

$${how}\:{sir} \\ $$

Answered by Lordose last updated on 26/Nov/20

  I = ∫_( 0) ^( ∞) ((xtan^(−1) (x))/((1+x^2 )^2 ))dx  IBP  I = (1/2)∫_0 ^( ∞) (1/((1+x^2 )^2 ))dx − ∣((tan^(−1) (x))/(2(1+x^2 )))∣_0 ^∞   Ostrogradski method  I = (1/4)[((x/(1+x^2 ))+tan^(−1) (x))]_0 ^∞ − (1/2)[((tan^(−1) (x))/((1+x^2 )))]_0 ^∞   I = (π/8)

$$ \\ $$$$\mathrm{I}\:=\:\int_{\:\mathrm{0}} ^{\:\infty} \frac{\mathrm{xtan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\mathrm{IBP} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:−\:\mid\frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{2}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}\mid_{\mathrm{0}} ^{\infty} \\ $$$$\mathrm{Ostrogradski}\:\mathrm{method} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left[\left(\frac{\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)\right]_{\mathrm{0}} ^{\infty} −\:\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}\right]_{\mathrm{0}} ^{\infty} \\ $$$$\mathrm{I}\:=\:\frac{\pi}{\mathrm{8}} \\ $$

Commented by bramlexs22 last updated on 26/Nov/20

thank you

$${thank}\:{you} \\ $$

Answered by Dwaipayan Shikari last updated on 26/Nov/20

∫_0 ^(π/2) t sint cost dt             t=tan^(−1) x  =(1/2)∫_0 ^(π/2) tsin2t dt =−[(t/4)cos2t]^(π/2)  +(1/8)[sin2t]_0 ^(π/2)  dt  =(π/8)

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {t}\:{sint}\:{cost}\:{dt}\:\:\:\:\:\:\:\:\:\:\:\:\:{t}={tan}^{−\mathrm{1}} {x} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {tsin}\mathrm{2}{t}\:{dt}\:=−\left[\frac{{t}}{\mathrm{4}}{cos}\mathrm{2}{t}\right]^{\frac{\pi}{\mathrm{2}}} \:+\frac{\mathrm{1}}{\mathrm{8}}\left[{sin}\mathrm{2}{t}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{dt} \\ $$$$=\frac{\pi}{\mathrm{8}} \\ $$

Commented by bramlexs22 last updated on 26/Nov/20

thank you

$${thank}\:{you} \\ $$

Answered by mathmax by abdo last updated on 26/Nov/20

A =∫_0 ^∞  ((xarctanx)/((1+x^2 )^2 ))dx we integrate by parts u^′  =(x/((1+x^2 )^2 ))  and v=srctsnx ⇒A =[−(1/(2(1+x^2 )))arctanx]_0 ^∞ +∫_0 ^∞ (1/(2(1+x^(2)) ))(dx/(1+x^2 ))  =(1/2)∫_0 ^∞  (dx/((1+x^2 )^2 )) =_(x=tanθ)   (1/2)∫_0 ^(π/2)  ((1+tan^2 θ)/((1+tan^2 θ)^2 ))dθ  =(1/2)∫_0 ^(π/2) cos^2 θ dθ =(1/4)∫_0 ^(π/2) (1+cos(2θ))dθ  =(π/8) +(1/8)[sin(2θ)]_0 ^(π/2)  =(π/8)+0 =(π/8)  A =(π/8)

$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{xarctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{we}\:\mathrm{integrate}\:\mathrm{by}\:\mathrm{parts}\:\mathrm{u}^{'} \:=\frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\mathrm{and}\:\mathrm{v}=\mathrm{srctsnx}\:\Rightarrow\mathrm{A}\:=\left[−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}\mathrm{arctanx}\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+\mathrm{x}^{\left.\mathrm{2}\right)} \right.}\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=_{\mathrm{x}=\mathrm{tan}\theta} \:\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }\mathrm{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2}} \theta\:\mathrm{d}\theta\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{cos}\left(\mathrm{2}\theta\right)\right)\mathrm{d}\theta \\ $$$$=\frac{\pi}{\mathrm{8}}\:+\frac{\mathrm{1}}{\mathrm{8}}\left[\mathrm{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi}{\mathrm{8}}+\mathrm{0}\:=\frac{\pi}{\mathrm{8}} \\ $$$$\mathrm{A}\:=\frac{\pi}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com