Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 123389 by aurpeyz last updated on 25/Nov/20

an unbiased coin is tossed three times if a discrere  random variable X denoted the   number of times a tail appears   1. list the sample space  2. find the distribution of X  3. the mean of X

$${an}\:{unbiased}\:{coin}\:{is}\:{tossed}\:{three}\:{times}\:{if}\:{a}\:{discrere} \\ $$$${random}\:{variable}\:{X}\:{denoted}\:{the}\: \\ $$$${number}\:{of}\:{times}\:{a}\:{tail}\:{appears}\: \\ $$$$\mathrm{1}.\:{list}\:{the}\:{sample}\:{space} \\ $$$$\mathrm{2}.\:{find}\:{the}\:{distribution}\:{of}\:{X} \\ $$$$\mathrm{3}.\:{the}\:{mean}\:{of}\:{X} \\ $$

Answered by som(math1967) last updated on 25/Nov/20

1.(TTT ,TTH ,THT, HTT, THH  HHT, HTH ,HHH)  probability of tail=p=(1/2)  probability of head=q=(1/2)  P(X)=^n c_r p^r q^(n−r)   i{No tail .  P(X=0)=^3 c_0 ((1/2))^0 ((1/2))^(3−0) =(1/8)  ii)one tail  P(X=1)=^3 c_1 ((1/2))^1 ((1/2))^(3−1) =(3/8)  iii)2 tail =(3/8)  iv)3 tail =(1/8)  2. { (x,0,1,2,3),((P(x)),(1/8),((3 )/8),(3/8),(1/8)) :}   3. Mean x^− =0×(1/8)+1×(3/8)+2×(3/8)          3×(1/8) =((12)/8)=1.5

$$\mathrm{1}.\left(\mathrm{TTT}\:,\mathrm{TTH}\:,\mathrm{THT},\:\mathrm{HTT},\:\mathrm{THH}\right. \\ $$$$\left.\mathrm{HHT},\:\mathrm{HTH}\:,\mathrm{HHH}\right) \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{tail}=\mathrm{p}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{head}=\mathrm{q}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{P}\left(\mathrm{X}\right)=^{\mathrm{n}} \mathrm{c}_{\mathrm{r}} \mathrm{p}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}−\mathrm{r}} \\ $$$$\mathrm{i}\left\{\mathrm{No}\:\mathrm{tail}\:.\right. \\ $$$$\mathrm{P}\left(\mathrm{X}=\mathrm{0}\right)=^{\mathrm{3}} \mathrm{c}_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}−\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\left.\mathrm{ii}\right)\mathrm{one}\:\mathrm{tail} \\ $$$$\mathrm{P}\left(\mathrm{X}=\mathrm{1}\right)=^{\mathrm{3}} \mathrm{c}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}−\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\left.\mathrm{iii}\right)\mathrm{2}\:\mathrm{tail}\:=\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\left.\mathrm{iv}\right)\mathrm{3}\:\mathrm{tail}\:=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{2}.\begin{cases}{\mathrm{x}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{P}\left(\mathrm{x}\right)}&{\frac{\mathrm{1}}{\mathrm{8}}}&{\frac{\mathrm{3}\:}{\mathrm{8}}}&{\frac{\mathrm{3}}{\mathrm{8}}}&{\frac{\mathrm{1}}{\mathrm{8}}}\end{cases}\: \\ $$$$\mathrm{3}.\:\mathrm{Mean}\:\overset{−} {\mathrm{x}}=\mathrm{0}×\frac{\mathrm{1}}{\mathrm{8}}+\mathrm{1}×\frac{\mathrm{3}}{\mathrm{8}}+\mathrm{2}×\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}×\frac{\mathrm{1}}{\mathrm{8}}\:=\frac{\mathrm{12}}{\mathrm{8}}=\mathrm{1}.\mathrm{5} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com