Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123386 by bemath last updated on 25/Nov/20

 Given   f(x)=(∫_0 ^1 f(x)dx)x^2 +(∫_0 ^2 f(x)dx)x+(∫_0 ^3 f(x)dx)+1  then the value of f(4) = ...

$$\:{Given}\: \\ $$$${f}\left({x}\right)=\left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({x}\right){dx}\right){x}^{\mathrm{2}} +\left(\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right){dx}\right){x}+\left(\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}{f}\left({x}\right){dx}\right)+\mathrm{1} \\ $$$${then}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{4}\right)\:=\:... \\ $$

Answered by TANMAY PANACEA last updated on 25/Nov/20

f(x)=ax^2 +bx+c+1  a=∫_0 ^1 (ax^2 +bx+c+1)  dx  a=∣((ax^3 )/3)+((bx^2 )/2)+cx+x∣_0 ^1   a=(a/3)+(b/2)+c+1.....(1st eqn)  b=∣((ax^3 )/3)+((bx^2 )/2)+cx+x∣_0 ^2   b=((8a)/3)+((4b)/2)+2c+2....+(2nd eqn)  c=∣((ax^3 )/3)+((bx^2 )/2)+cx+x∣_0 ^3   c=((27a)/3)+((9b)/4)+3c+3....(3rd eqn)  we have to solve  to find (a,b and c)  f(x)=ax^2 +bx+c+1  nxt to put x=4    pls try from here..

$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}+\mathrm{1} \\ $$$${a}=\int_{\mathrm{0}} ^{\mathrm{1}} \left({ax}^{\mathrm{2}} +{bx}+{c}+\mathrm{1}\right)\:\:{dx} \\ $$$${a}=\mid\frac{{ax}^{\mathrm{3}} }{\mathrm{3}}+\frac{{bx}^{\mathrm{2}} }{\mathrm{2}}+{cx}+{x}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${a}=\frac{{a}}{\mathrm{3}}+\frac{{b}}{\mathrm{2}}+{c}+\mathrm{1}.....\left(\mathrm{1}{st}\:{eqn}\right) \\ $$$${b}=\mid\frac{{ax}^{\mathrm{3}} }{\mathrm{3}}+\frac{{bx}^{\mathrm{2}} }{\mathrm{2}}+{cx}+{x}\mid_{\mathrm{0}} ^{\mathrm{2}} \\ $$$${b}=\frac{\mathrm{8}{a}}{\mathrm{3}}+\frac{\mathrm{4}{b}}{\mathrm{2}}+\mathrm{2}{c}+\mathrm{2}....+\left(\mathrm{2}{nd}\:{eqn}\right) \\ $$$${c}=\mid\frac{{ax}^{\mathrm{3}} }{\mathrm{3}}+\frac{{bx}^{\mathrm{2}} }{\mathrm{2}}+{cx}+{x}\mid_{\mathrm{0}} ^{\mathrm{3}} \\ $$$${c}=\frac{\mathrm{27}{a}}{\mathrm{3}}+\frac{\mathrm{9}{b}}{\mathrm{4}}+\mathrm{3}{c}+\mathrm{3}....\left(\mathrm{3}{rd}\:{eqn}\right) \\ $$$${we}\:{have}\:{to}\:{solve}\:\:{to}\:{find}\:\left({a},{b}\:{and}\:{c}\right) \\ $$$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}+\mathrm{1} \\ $$$${nxt}\:{to}\:{put}\:{x}=\mathrm{4} \\ $$$$ \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{try}}\:\boldsymbol{{from}}\:\boldsymbol{{here}}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com