Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 123212 by 676597498 last updated on 24/Nov/20

Commented by 676597498 last updated on 24/Nov/20

pls i need help

$${pls}\:{i}\:{need}\:{help} \\ $$

Answered by MJS_new last updated on 24/Nov/20

mouse   ((x),(y) ) = ((0),(1) ) + (((6p)),((−2p)) )  cat   ((x),(y) ) = ((0),((−1)) ) + (((8q)),(q) )  the paths intersect at  6p=8q∧1−2p=−1+q ⇒ p=(8/(11))∧q=(6/(11)) ⇒  ⇒  ((x),(y) ) = (((48/11)),((−5/11)) )  but they don′t meet because p≠q. p>q means  the mouse is late  for the time when they are the nearest let  p=q=t  the position of the mouse is  (((6t)),((1−2t)) )  the position of the cat is  (((8t)),((−1+t)) )  their distance is  (√((6t−8t)^2 +(1−2t−(−1+t)^2 ))=  =(√(13t^2 −12t+4))  the minimum distance is at t=(6/(13)) and is  ((4(√(13)))/(13))≈1.11m

$$\mathrm{mouse} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{6}{p}}\\{−\mathrm{2}{p}}\end{pmatrix} \\ $$$$\mathrm{cat} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{0}}\\{−\mathrm{1}}\end{pmatrix}\:+\begin{pmatrix}{\mathrm{8}{q}}\\{{q}}\end{pmatrix} \\ $$$$\mathrm{the}\:\mathrm{paths}\:\mathrm{intersect}\:\mathrm{at} \\ $$$$\mathrm{6}{p}=\mathrm{8}{q}\wedge\mathrm{1}−\mathrm{2}{p}=−\mathrm{1}+{q}\:\Rightarrow\:{p}=\frac{\mathrm{8}}{\mathrm{11}}\wedge{q}=\frac{\mathrm{6}}{\mathrm{11}}\:\Rightarrow \\ $$$$\Rightarrow\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{\mathrm{48}/\mathrm{11}}\\{−\mathrm{5}/\mathrm{11}}\end{pmatrix} \\ $$$$\mathrm{but}\:\mathrm{they}\:\mathrm{don}'\mathrm{t}\:\mathrm{meet}\:\mathrm{because}\:{p}\neq{q}.\:{p}>{q}\:\mathrm{means} \\ $$$$\mathrm{the}\:\mathrm{mouse}\:\mathrm{is}\:\mathrm{late} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{time}\:\mathrm{when}\:\mathrm{they}\:\mathrm{are}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{let} \\ $$$${p}={q}={t} \\ $$$$\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mouse}\:\mathrm{is}\:\begin{pmatrix}{\mathrm{6}{t}}\\{\mathrm{1}−\mathrm{2}{t}}\end{pmatrix} \\ $$$$\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cat}\:\mathrm{is}\:\begin{pmatrix}{\mathrm{8}{t}}\\{−\mathrm{1}+{t}}\end{pmatrix} \\ $$$$\mathrm{their}\:\mathrm{distance}\:\mathrm{is} \\ $$$$\sqrt{\left(\mathrm{6}{t}−\mathrm{8}{t}\right)^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{2}{t}−\left(−\mathrm{1}+{t}\right)^{\mathrm{2}} \right.}= \\ $$$$=\sqrt{\mathrm{13}{t}^{\mathrm{2}} −\mathrm{12}{t}+\mathrm{4}} \\ $$$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{distance}\:\mathrm{is}\:\mathrm{at}\:{t}=\frac{\mathrm{6}}{\mathrm{13}}\:\mathrm{and}\:\mathrm{is} \\ $$$$\frac{\mathrm{4}\sqrt{\mathrm{13}}}{\mathrm{13}}\approx\mathrm{1}.\mathrm{11m} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com