Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122938 by CanovasCamiseros last updated on 21/Nov/20

Commented by CanovasCamiseros last updated on 21/Nov/20

help

$$\boldsymbol{{help}} \\ $$

Answered by Dwaipayan Shikari last updated on 21/Nov/20

∫2^(1/x) dx  =∫e^((1/x)log(2)) dx  =∫Σ_(n=0) ^∞ ((((1/x)log2)^n )/(n!))  =Σ_(n=0) ^∞ ((log^n (2))/(n!)).∫((1/x))^n dx            (1/x)=t⇒−(1/x^2 )=(dt/dx)  =−Σ_(n=0) ^∞ ((log^n (2))/(n!))∫t^(n−2) dt  =−Σ_(n=0) ^∞ ((log^n (2))/(n!)).(t^(n−1) /(n−1))=Σ_(n=0) ^∞ ((log^n (2))/(n!)).(t^(n−1) /(1−n))

$$\int\mathrm{2}^{\frac{\mathrm{1}}{{x}}} {dx} \\ $$$$=\int{e}^{\frac{\mathrm{1}}{{x}}{log}\left(\mathrm{2}\right)} {dx} \\ $$$$=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{{x}}{log}\mathrm{2}\right)^{{n}} }{{n}!} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{log}^{{n}} \left(\mathrm{2}\right)}{{n}!}.\int\left(\frac{\mathrm{1}}{{x}}\right)^{{n}} {dx}\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{x}}={t}\Rightarrow−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\frac{{dt}}{{dx}} \\ $$$$=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{log}^{{n}} \left(\mathrm{2}\right)}{{n}!}\int{t}^{{n}−\mathrm{2}} {dt} \\ $$$$=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{log}^{{n}} \left(\mathrm{2}\right)}{{n}!}.\frac{{t}^{{n}−\mathrm{1}} }{{n}−\mathrm{1}}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{log}^{{n}} \left(\mathrm{2}\right)}{{n}!}.\frac{{t}^{{n}−\mathrm{1}} }{\mathrm{1}−{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com