Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122922 by bemath last updated on 21/Nov/20

   ∫_0 ^(π/4)  ((cos x+sin x)/(16sin 2x+9)) dx

$$\:\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{cos}\:{x}+\mathrm{sin}\:{x}}{\mathrm{16sin}\:\mathrm{2}{x}+\mathrm{9}}\:{dx}\: \\ $$

Answered by liberty last updated on 21/Nov/20

ς = ∫_0 ^(π/4) ((cos x+sin x)/(16sin 2x+9)) dx    [ let 16sin 2x+9 = t ⇒dt=32cos 2x dx ]   ⇒dt = 32 (cos x+sin x)(cos x−sin x)dx  ⇒dt=32(cos x+sin x)(√(1−sin 2x)) dx  ⇒dt=32(cos x+sin x)(√(1−(((t−9)/(16))))) dx  ⇒(cos x+sin x)dx = (dt/(32 (√((25−t)/(16)))))=(dt/(8(√(25−t))))  ς = ∫_9 ^(25) (dt/(8t(√(25−t)))) =(1/( 8))∫_9 ^(25) (dt/(t(√(25−t))))   [ let (√(25−t)) = s ⇒t=25−s^2  ]   ς = (1/8)∫_4 ^0 ((−2s ds)/(s(25−s^2 )))= (1/4)∫_0 ^4 (ds/(25−s^2 ))  [ ((−1)/((s+5)(s−5))) = (A/(s+5)) + (B/(s−5)) ]   [ A=((−1)/(s−5))∣_(s=−5)  = (1/(10)) ∧ B = ((−1)/(s+5)) ∣_(s=5) =−(1/(10)) ]  ς = (1/(40)) (∫_0 ^4 (ds/(s+5))−∫_0 ^4 (ds/(s−5)))  ς = (1/(40)) (ln ∣((s+5)/(s−5))∣)_0 ^4 = ((ln (9))/(40)).▲

$$\varsigma\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\frac{\mathrm{cos}\:{x}+\mathrm{sin}\:{x}}{\mathrm{16sin}\:\mathrm{2}{x}+\mathrm{9}}\:{dx}\: \\ $$$$\:\left[\:{let}\:\mathrm{16sin}\:\mathrm{2}{x}+\mathrm{9}\:=\:{t}\:\Rightarrow{dt}=\mathrm{32cos}\:\mathrm{2}{x}\:{dx}\:\right] \\ $$$$\:\Rightarrow{dt}\:=\:\mathrm{32}\:\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right){dx} \\ $$$$\Rightarrow{dt}=\mathrm{32}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}\:{dx} \\ $$$$\Rightarrow{dt}=\mathrm{32}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)\sqrt{\mathrm{1}−\left(\frac{{t}−\mathrm{9}}{\mathrm{16}}\right)}\:{dx} \\ $$$$\Rightarrow\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right){dx}\:=\:\frac{{dt}}{\mathrm{32}\:\sqrt{\frac{\mathrm{25}−{t}}{\mathrm{16}}}}=\frac{{dt}}{\mathrm{8}\sqrt{\mathrm{25}−{t}}} \\ $$$$\varsigma\:=\:\int_{\mathrm{9}} ^{\mathrm{25}} \frac{{dt}}{\mathrm{8}{t}\sqrt{\mathrm{25}−{t}}}\:=\frac{\mathrm{1}}{\:\mathrm{8}}\int_{\mathrm{9}} ^{\mathrm{25}} \frac{{dt}}{{t}\sqrt{\mathrm{25}−{t}}} \\ $$$$\:\left[\:{let}\:\sqrt{\mathrm{25}−{t}}\:=\:{s}\:\Rightarrow{t}=\mathrm{25}−{s}^{\mathrm{2}} \:\right]\: \\ $$$$\varsigma\:=\:\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{4}} ^{\mathrm{0}} \frac{−\mathrm{2}{s}\:{ds}}{{s}\left(\mathrm{25}−{s}^{\mathrm{2}} \right)}=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{4}} \frac{{ds}}{\mathrm{25}−{s}^{\mathrm{2}} } \\ $$$$\left[\:\frac{−\mathrm{1}}{\left({s}+\mathrm{5}\right)\left({s}−\mathrm{5}\right)}\:=\:\frac{{A}}{{s}+\mathrm{5}}\:+\:\frac{{B}}{{s}−\mathrm{5}}\:\right] \\ $$$$\:\left[\:{A}=\frac{−\mathrm{1}}{{s}−\mathrm{5}}\mid_{{s}=−\mathrm{5}} \:=\:\frac{\mathrm{1}}{\mathrm{10}}\:\wedge\:{B}\:=\:\frac{−\mathrm{1}}{{s}+\mathrm{5}}\:\mid_{{s}=\mathrm{5}} =−\frac{\mathrm{1}}{\mathrm{10}}\:\right] \\ $$$$\varsigma\:=\:\frac{\mathrm{1}}{\mathrm{40}}\:\left(\int_{\mathrm{0}} ^{\mathrm{4}} \frac{{ds}}{{s}+\mathrm{5}}−\int_{\mathrm{0}} ^{\mathrm{4}} \frac{{ds}}{{s}−\mathrm{5}}\right) \\ $$$$\varsigma\:=\:\frac{\mathrm{1}}{\mathrm{40}}\:\left(\mathrm{ln}\:\mid\frac{{s}+\mathrm{5}}{{s}−\mathrm{5}}\mid\right)_{\mathrm{0}} ^{\mathrm{4}} =\:\frac{\mathrm{ln}\:\left(\mathrm{9}\right)}{\mathrm{40}}.\blacktriangle \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com