Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 122824 by bemath last updated on 19/Nov/20

   lim_(x→0) ((sin (1−cos x))/(2x^2 )) =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\mathrm{2}{x}^{\mathrm{2}} }\:=? \\ $$

Commented by bobhans last updated on 20/Nov/20

 =lim_(x→0)  ((sin (2sin^2 ((1/2)x)))/(2x^2 ))   =lim_(x→0)  ((sin (lim_(x→0)  ((2sin^2 ((1/2)x))/x^2 ) . x^2 ))/(2x^2 ))  =  lim_(x→0)  ((sin((1/2)x^2 ) )/(2x^2 )) = (1/4).

$$\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{x}\right)\right)}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{x}\right)}{{x}^{\mathrm{2}} }\:.\:{x}^{\mathrm{2}} \right)}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$=\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right)\:}{\mathrm{2}{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{4}}.\: \\ $$

Answered by liberty last updated on 19/Nov/20

 lim_(x→0)  ((sin (1−cos x))/(2x^2 )) = lim_(x→0) ((sin (1−cos x))/(1−cos x)).lim_(x→0) ((1−cos x)/(2x^2 ))  the first limit lim_(x→0)  ((sin (1−cos x))/(1−cos x))=lim_(X→0) ((sin X)/X)=1  the second limit lim_(x→0) ((1−cos x)/(2x^2 ))=lim_(x→0) ((2sin^2 ((x/2)))/(2x^2 ))=(1/4)  thus lim_(x→0) ((sin (1−cos x))/(2x^2 ))=(1/4).▲

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\mathrm{2}{x}^{\mathrm{2}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\mathrm{1}−\mathrm{cos}\:{x}}.\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$${the}\:{first}\:{limit}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\mathrm{1}−\mathrm{cos}\:{x}}=\underset{{X}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{X}}{{X}}=\mathrm{1} \\ $$$${the}\:{second}\:{limit}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{2}{x}^{\mathrm{2}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${thus}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\mathrm{2}{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}.\blacktriangle \\ $$

Answered by mathmax by abdo last updated on 20/Nov/20

1−cosx∼(x^2 /2) ⇒sin(1−cosx)∼sin((x^2 /2))∼(x^2 /2) ⇒  ((sin(1−cosx))/(2x^2 ))∼(x^2 /(2(2x^2 )))=(1/4) ⇒lim_(x→0)    ((sin(1−cosx))/(2x^2 ))=(1/4)

$$\mathrm{1}−\mathrm{cosx}\sim\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{sin}\left(\mathrm{1}−\mathrm{cosx}\right)\sim\mathrm{sin}\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)\sim\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\frac{\mathrm{sin}\left(\mathrm{1}−\mathrm{cosx}\right)}{\mathrm{2x}^{\mathrm{2}} }\sim\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{2x}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{sin}\left(\mathrm{1}−\mathrm{cosx}\right)}{\mathrm{2x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com