Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122807 by TITA last updated on 19/Nov/20

Commented by TITA last updated on 19/Nov/20

please help

$${please}\:{help} \\ $$

Answered by ebi last updated on 20/Nov/20

V=∫∫_E ∫ f(x,y,z) dV  volume enclosed by  z=x+y, z=0  y=x^2 , x=y^2   the limit of z is 0≤z≤x+y.  on xy−plane, the bounded region is  between y=x^2  and x=y^2 ,  thus, the limit of y is x^2 ≤y≤(√x).  now, finding the domain of x,  x=x^4 ⇒x^4 −x=0⇒x(x^3 −1)=0  x=0 or x=1,  thus, limit of x is 0≤x≤1.    V=∫∫_D ∫_(u_1 (x,y)) ^(u_2 (x,y)) f(x,y,z) dz dA  E={(x,y,z)∣(x,y)∈D, 0≤z≤x+y}  D={(x,y)∣0≤x≤1, x^2 ≤y≤(√x)}    V=∫_0 ^1 ∫_x^2  ^(√x) ∫_0 ^(x+y) xy dz dy dx  V=∫_0 ^1 ∫_x^2  ^(√x) xyz∣_0 ^(x+y)  dy dx  V=∫_0 ^1 ∫_x^2  ^(√x) x^2 y+xy^2  dy dx  V=∫_0 ^1  ((x^2 y^2 )/2)+((xy^3 )/3)∣_x^2  ^(√x)  dx  V=∫_0 ^1  (x^3 /2)+(x^(5/2) /3)−(x^6 /2)−(x^7 /3) dx  V= (x^4 /8)+((2x^(7/2) )/(21))−(x^7 /(14))−(x^8 /(24))∣_0 ^1   V=(1/8)+((2(1))/(21))−(1/(14))−(1/(24))=(3/(28))

$${V}=\int\underset{{E}} {\int}\int\:{f}\left({x},{y},{z}\right)\:{dV} \\ $$$${volume}\:{enclosed}\:{by} \\ $$$${z}={x}+{y},\:{z}=\mathrm{0} \\ $$$${y}={x}^{\mathrm{2}} ,\:{x}={y}^{\mathrm{2}} \\ $$$${the}\:{limit}\:{of}\:{z}\:{is}\:\mathrm{0}\leqslant{z}\leqslant{x}+{y}. \\ $$$${on}\:{xy}−{plane},\:{the}\:{bounded}\:{region}\:{is} \\ $$$${between}\:{y}={x}^{\mathrm{2}} \:{and}\:{x}={y}^{\mathrm{2}} , \\ $$$${thus},\:{the}\:{limit}\:{of}\:{y}\:{is}\:{x}^{\mathrm{2}} \leqslant{y}\leqslant\sqrt{{x}}. \\ $$$${now},\:{finding}\:{the}\:{domain}\:{of}\:{x}, \\ $$$${x}={x}^{\mathrm{4}} \Rightarrow{x}^{\mathrm{4}} −{x}=\mathrm{0}\Rightarrow{x}\left({x}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=\mathrm{0}\:{or}\:{x}=\mathrm{1}, \\ $$$${thus},\:{limit}\:{of}\:{x}\:{is}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}. \\ $$$$ \\ $$$${V}=\int\underset{{D}} {\int}\int_{{u}_{\mathrm{1}} \left({x},{y}\right)} ^{{u}_{\mathrm{2}} \left({x},{y}\right)} {f}\left({x},{y},{z}\right)\:{dz}\:{dA} \\ $$$${E}=\left\{\left({x},{y},{z}\right)\mid\left({x},{y}\right)\in{D},\:\mathrm{0}\leqslant{z}\leqslant{x}+{y}\right\} \\ $$$${D}=\left\{\left({x},{y}\right)\mid\mathrm{0}\leqslant{x}\leqslant\mathrm{1},\:{x}^{\mathrm{2}} \leqslant{y}\leqslant\sqrt{{x}}\right\} \\ $$$$ \\ $$$${V}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\int_{{x}^{\mathrm{2}} } ^{\sqrt{{x}}} \int_{\mathrm{0}} ^{{x}+{y}} {xy}\:{dz}\:{dy}\:{dx} \\ $$$${V}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\int_{{x}^{\mathrm{2}} } ^{\sqrt{{x}}} {xyz}\mid_{\mathrm{0}} ^{{x}+{y}} \:{dy}\:{dx} \\ $$$${V}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\int_{{x}^{\mathrm{2}} } ^{\sqrt{{x}}} {x}^{\mathrm{2}} {y}+{xy}^{\mathrm{2}} \:{dy}\:{dx} \\ $$$${V}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{\mathrm{2}} {y}^{\mathrm{2}} }{\mathrm{2}}+\frac{{xy}^{\mathrm{3}} }{\mathrm{3}}\mid_{{x}^{\mathrm{2}} } ^{\sqrt{{x}}} \:{dx} \\ $$$${V}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }{\mathrm{3}}−\frac{{x}^{\mathrm{6}} }{\mathrm{2}}−\frac{{x}^{\mathrm{7}} }{\mathrm{3}}\:{dx} \\ $$$${V}=\:\frac{{x}^{\mathrm{4}} }{\mathrm{8}}+\frac{\mathrm{2}{x}^{\frac{\mathrm{7}}{\mathrm{2}}} }{\mathrm{21}}−\frac{{x}^{\mathrm{7}} }{\mathrm{14}}−\frac{{x}^{\mathrm{8}} }{\mathrm{24}}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{2}\left(\mathrm{1}\right)}{\mathrm{21}}−\frac{\mathrm{1}}{\mathrm{14}}−\frac{\mathrm{1}}{\mathrm{24}}=\frac{\mathrm{3}}{\mathrm{28}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com