Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 122788 by 676597498 last updated on 19/Nov/20

Answered by mr W last updated on 20/Nov/20

0<(1/2)+(1/(1000))<1⇒[(1/2)+(1/(1000))]=0  ...  0<(1/2)+((499)/(1000))<1⇒[(1/2)+((499)/(1000))]=0  (1/2)+((500)/(1000))=1⇒[(1/2)+((500)/(1000))]=1  1<(1/2)+((501)/(1000))<2⇒[(1/2)+((501)/(1000))]=1  ...  1<(1/2)+((999)/(1000))<2⇒[(1/2)+((999)/(1000))]=1    ⇒sum=999−499=500

$$\mathrm{0}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1000}}<\mathrm{1}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1000}}\right]=\mathrm{0} \\ $$$$... \\ $$$$\mathrm{0}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{499}}{\mathrm{1000}}<\mathrm{1}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{499}}{\mathrm{1000}}\right]=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{500}}{\mathrm{1000}}=\mathrm{1}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{500}}{\mathrm{1000}}\right]=\mathrm{1} \\ $$$$\mathrm{1}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{501}}{\mathrm{1000}}<\mathrm{2}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{501}}{\mathrm{1000}}\right]=\mathrm{1} \\ $$$$... \\ $$$$\mathrm{1}<\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{999}}{\mathrm{1000}}<\mathrm{2}\Rightarrow\left[\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{999}}{\mathrm{1000}}\right]=\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow{sum}=\mathrm{999}−\mathrm{499}=\mathrm{500} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com