Question Number 122579 by bramlexs22 last updated on 18/Nov/20 | ||
Answered by liberty last updated on 18/Nov/20 | ||
$$\left(\mathrm{2a}\right)\:\mathrm{Q}\:\mathrm{symetric}\:\mathrm{if}\:\mathrm{Q}\:=\:\mathrm{Q}^{\mathrm{t}} \\ $$$$\Leftrightarrow\:\begin{pmatrix}{\mathrm{5}\:\:\:\:\:\mathrm{6x}+\mathrm{5y}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{6}\:\:\:\:\:\:\mathrm{5y}^{\mathrm{2}} −\mathrm{2x}}\\{\mathrm{x}^{\mathrm{2}} −\mathrm{8}\:\:\:\mathrm{3z}\:\:\:\:\:\:\:\:\:\:\:\mathrm{p}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} −\mathrm{8}}\\{\mathrm{6x}+\mathrm{5y}\:\:\:\:\mathrm{6}\:\:\:\:\:\:\:\:\:\:\mathrm{3z}}\\{\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5y}^{\mathrm{2}} −\mathrm{2x}\:\:\:\mathrm{p}}\end{pmatrix} \\ $$$$\mathrm{gives}\:\begin{cases}{\mathrm{6x}+\mathrm{5y}=\mathrm{1}\:\wedge\:\mathrm{x}^{\mathrm{2}} −\mathrm{8}=\mathrm{1}\:\begin{cases}{\mathrm{x}=\mathrm{3}}\\{\mathrm{x}=−\mathrm{3}}\end{cases}}\\{\mathrm{y}=\begin{cases}{\frac{\mathrm{1}−\mathrm{6}\left(\mathrm{3}\right)}{\mathrm{5}}=−\frac{\mathrm{17}}{\mathrm{5}}}\\{\frac{\mathrm{1}−\mathrm{6}\left(−\mathrm{3}\right)}{\mathrm{5}}=\frac{\mathrm{19}}{\mathrm{5}}}\end{cases}}\end{cases} \\ $$$$\:\Leftrightarrow\:\mathrm{z}\:=\:\frac{\mathrm{5y}^{\mathrm{2}} −\mathrm{2x}}{\mathrm{3}}=\begin{cases}{\frac{\mathrm{5}\left(−\frac{\mathrm{17}}{\mathrm{5}}\right)^{\mathrm{2}} −\mathrm{2}.\mathrm{3}}{\mathrm{3}}}\\{\frac{\mathrm{5}\left(\frac{\mathrm{19}}{\mathrm{5}}\right)^{\mathrm{2}} −\mathrm{2}.\left(−\mathrm{3}\right)}{\mathrm{3}}}\end{cases} \\ $$ | ||