Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 122467 by Dwaipayan Shikari last updated on 17/Nov/20

(1/(π^2 −1))+(1/(4π^2 −1))+(1/(9π^2 −1))+(1/(16π^2 −1))+....

$$\frac{\mathrm{1}}{\pi^{\mathrm{2}} −\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{9}\pi^{\mathrm{2}} −\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{16}\pi^{\mathrm{2}} −\mathrm{1}}+.... \\ $$

Commented by Dwaipayan Shikari last updated on 17/Nov/20

cotx=(1/x)−(1/(π−x))+(1/(π+x))−(1/(2π−x))+(1/(2π+x))−...  cot(1)=1−(2/(π^2 −1))−(2/(4π^2 −1))−(2/(9π^2 −1))−...  1−cot(1)=2((1/(π^2 −1))+(1/(4π^2 −1))+(1/(9π^2 −1))+...)  Σ_(n=1) ^∞ (1/(n^2 π^2 −1))=((1−cot(1))/2)

$${cotx}=\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\pi−{x}}+\frac{\mathrm{1}}{\pi+{x}}−\frac{\mathrm{1}}{\mathrm{2}\pi−{x}}+\frac{\mathrm{1}}{\mathrm{2}\pi+{x}}−... \\ $$$${cot}\left(\mathrm{1}\right)=\mathrm{1}−\frac{\mathrm{2}}{\pi^{\mathrm{2}} −\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{9}\pi^{\mathrm{2}} −\mathrm{1}}−... \\ $$$$\mathrm{1}−{cot}\left(\mathrm{1}\right)=\mathrm{2}\left(\frac{\mathrm{1}}{\pi^{\mathrm{2}} −\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{4}\pi^{\mathrm{2}} −\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{9}\pi^{\mathrm{2}} −\mathrm{1}}+...\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}−{cot}\left(\mathrm{1}\right)}{\mathrm{2}} \\ $$

Answered by mnjuly1970 last updated on 17/Nov/20

 ((sin(πx))/(πx)) =Π_(k=1) ^∞ (1−(x^2 /k^2 ))  ln(sin(πx))−ln(πx)=Σ_(k=1) ^∞ log(1−(x^2 /k^2 ))  ∴ πcot(πx)−(1/x)=Σ_(k=1) ^∞ ((((−2x)/k^2 )/(1−(x^2 /k^2 ))))   ∴ πcot(πx)−(1/x)=−2xΣ_(k=1) ^∞ ((1/(k^2 −x^2 )))    ∴ (1/(2x^2 ))−(π/(2x))cot(πx)=Σ_(k=1) ^∞ (1/(k^2 −x^2 ))  ✓   x=(1/π) ⇒ (π^2 /2)−(π^2 /2)cot(1) =Σ_(k=1) ^∞ (π^2 /(k^2 π^2 −1))       ∴     Σ(1/(k^2 π^2 −1)) =(1/2)(1−cot(1))  ✓        ... correct  or no  ?              mr .Dwaipayan ...        ∴     .m.n.1970.

$$\:\frac{{sin}\left(\pi{x}\right)}{\pi{x}}\:=\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{k}^{\mathrm{2}} }\right) \\ $$$${ln}\left({sin}\left(\pi{x}\right)\right)−{ln}\left(\pi{x}\right)=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}{log}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{k}^{\mathrm{2}} }\right) \\ $$$$\therefore\:\pi{cot}\left(\pi{x}\right)−\frac{\mathrm{1}}{{x}}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\frac{−\mathrm{2}{x}}{{k}^{\mathrm{2}} }}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{k}^{\mathrm{2}} }}\right) \\ $$$$\:\therefore\:\pi{cot}\left(\pi{x}\right)−\frac{\mathrm{1}}{{x}}=−\mathrm{2}{x}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}^{\mathrm{2}} −{x}^{\mathrm{2}} }\right) \\ $$$$\:\:\therefore\:\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }−\frac{\pi}{\mathrm{2}{x}}{cot}\left(\pi{x}\right)=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:\:\checkmark \\ $$$$\:{x}=\frac{\mathrm{1}}{\pi}\:\Rightarrow\:\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}{cot}\left(\mathrm{1}\right)\:=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\pi^{\mathrm{2}} }{{k}^{\mathrm{2}} \pi^{\mathrm{2}} −\mathrm{1}} \\ $$$$\:\:\:\:\:\therefore\:\:\:\:\:\Sigma\frac{\mathrm{1}}{{k}^{\mathrm{2}} \pi^{\mathrm{2}} −\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{cot}\left(\mathrm{1}\right)\right)\:\:\checkmark \\ $$$$\:\:\:\:\:\:...\:{correct}\:\:{or}\:{no}\:\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{mr}\:.{Dwaipayan}\:... \\ $$$$ \\ $$$$\:\:\:\:\therefore\:\:\:\:\:.{m}.{n}.\mathrm{1970}. \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Commented by Dwaipayan Shikari last updated on 17/Nov/20

Error in 4th line x=(1/π)  So it becomes(π^2 /2)− ((π^2 cot(1))/2)=π^2 Σ^∞ (1/(k^2 π^2 −1))  Σ^∞ (1/(k^2 π^2 −1))=(1/2)(1−cot(1))

$${Error}\:{in}\:\mathrm{4}{th}\:{line}\:{x}=\frac{\mathrm{1}}{\pi} \\ $$$${So}\:{it}\:{becomes}\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\:\frac{\pi^{\mathrm{2}} {cot}\left(\mathrm{1}\right)}{\mathrm{2}}=\pi^{\mathrm{2}} \overset{\infty} {\sum}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \pi^{\mathrm{2}} −\mathrm{1}} \\ $$$$\overset{\infty} {\sum}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \pi^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{cot}\left(\mathrm{1}\right)\right) \\ $$

Commented by Dwaipayan Shikari last updated on 17/Nov/20

Thanking you for Interacting with this Problem

$${Thanking}\:{you}\:{for}\:{Interacting}\:{with}\:{this}\:{Problem} \\ $$

Commented by mnjuly1970 last updated on 17/Nov/20

  thank  you  so much...

$$\:\:{thank}\:\:{you}\:\:{so}\:{much}... \\ $$

Commented by mnjuly1970 last updated on 17/Nov/20

excuse me mr payan.but    i couldent find any error   in 4th line . i differentiated   both sides and simplified it. ...

$${excuse}\:{me}\:{mr}\:{payan}.{but} \\ $$$$\:\:{i}\:{couldent}\:{find}\:{any}\:{error} \\ $$$$\:{in}\:\mathrm{4}{th}\:{line}\:.\:{i}\:{differentiated} \\ $$$$\:{both}\:{sides}\:{and}\:{simplified}\:{it}.\:... \\ $$

Commented by mnjuly1970 last updated on 17/Nov/20

 i am checking it.

$$\:{i}\:{am}\:{checking}\:{it}. \\ $$

Commented by mnjuly1970 last updated on 17/Nov/20

please review and recheck.

$${please}\:{review}\:{and}\:{recheck}. \\ $$$$\: \\ $$

Commented by Dwaipayan Shikari last updated on 17/Nov/20

You have edited many times ago. there is no mistake now  sir? :)  You are wondering about the mistake   But actually there is no mistake  :)

$${You}\:{have}\:{edited}\:{many}\:{times}\:{ago}.\:{there}\:{is}\:{no}\:{mistake}\:{now} \\ $$$$\left.{sir}?\::\right) \\ $$$${You}\:{are}\:{wondering}\:{about}\:{the}\:{mistake}\: \\ $$$$\left.{But}\:{actually}\:{there}\:{is}\:{no}\:{mistake}\:\::\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 17/Nov/20

you are also funny person. joke is also an aspect  of mathematics .  i think you are many years youngers  than me .  by the way ,you have a good future  in math. good luck young man.

$${you}\:{are}\:{also}\:{funny}\:{person}.\:{joke}\:{is}\:{also}\:{an}\:{aspect} \\ $$$${of}\:{mathematics}\:. \\ $$$${i}\:{think}\:{you}\:{are}\:{many}\:{years}\:{youngers} \\ $$$${than}\:{me}\:. \\ $$$${by}\:{the}\:{way}\:,{you}\:{have}\:{a}\:{good}\:{future} \\ $$$${in}\:{math}.\:{good}\:{luck}\:{young}\:{man}. \\ $$

Commented by Dwaipayan Shikari last updated on 17/Nov/20

My age is e^(2.82)

$${My}\:{age}\:{is}\:{e}^{\mathrm{2}.\mathrm{82}} \\ $$

Commented by mnjuly1970 last updated on 18/Nov/20

   mercey .≈ 17              my age is ≈ 3e^(2.82)

$$\:\:\:{mercey}\:.\approx\:\mathrm{17}\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:{my}\:{age}\:{is}\:\approx\:\mathrm{3}{e}^{\mathrm{2}.\mathrm{82}} \:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com