Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122448 by mohammad17 last updated on 17/Nov/20

∫ (e^x /(e^((x+2)^2 ) −1))dx

$$\int\:\frac{{e}^{{x}} }{{e}^{\left({x}+\mathrm{2}\right)^{\mathrm{2}} } −\mathrm{1}}{dx} \\ $$

Commented by mohammad17 last updated on 17/Nov/20

help me sir

$${help}\:{me}\:{sir} \\ $$

Commented by MJS_new last updated on 17/Nov/20

I don′t think we can solve this

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this} \\ $$

Commented by Dwaipayan Shikari last updated on 17/Nov/20

(1/e^2 )∫(e^t /(e^t^2  −1))dt               t=x+2       (1/e^2 )∫e^t Σ_(n=1) ^∞ e^(−nt^2 ) dt  (1/e^2 )Σ_(n≥1) ^∞ ∫e^(−nt^2 +t) dt =(1/e^2 )Σ_(n≥1) ^∞ ∫e^(−n((t−(1/(2n)))^2 −(1/(4n^2 )))) dt  =(1/e^2 )Σ_(n≥1) ^∞ e^(1/(4n)) ∫e^(−n(t−(1/(2n)))^2 ) dt                   (t−(1/(2n)))=u⇒1=(du/dt)  =(1/e^2 )Σ_(n≥1) ^∞ e^(1/(4n)) ∫e^(−nu^2 ) du            nu^2 =p⇒2nu=(dp/du)  =(1/e^2 )Σ_(n≥1) ^∞ e^(1/(4n)) ∫Σ_(k≥0) ^∞ (((−nu^2 )^k )/(k!))du  =(1/e^2 )Σ_(n≥1) ^∞ e^(1/(4n)) Σ_(k≥0) ^∞ (((−n)^k )/(k!)).(u^(2k+1) /(2k+1))=(1/e^2 )Σ_(n≥1) ^∞ e^(1/(4n)) Σ_(k≥0) ^∞ (((−n)^k )/(k!)).(1/(2k+1))(x−(1/(2n))−2)^(2k+1)   =(1/e^2 )Σ_(n≥1) ^∞ e^(1/(4n)) Σ_(k≥0) ^∞ (((−n)^k )/(k!)).(((x−(1/(2n))−2)^(2k+1) )/(2k+1))+(C/e^2 )Σ_(n≥0) ^∞ e^(1/(4n)) Σ_(k≥0) ^∞ (((−n)^k )/(k!))

$$\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\int\frac{{e}^{{t}} }{{e}^{{t}^{\mathrm{2}} } −\mathrm{1}}{dt}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}={x}+\mathrm{2}\:\:\:\:\: \\ $$$$\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\int{e}^{{t}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{−{nt}^{\mathrm{2}} } {dt} \\ $$$$\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\int{e}^{−{nt}^{\mathrm{2}} +{t}} {dt}\:=\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\int{e}^{−{n}\left(\left({t}−\frac{\mathrm{1}}{\mathrm{2}{n}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\right)} {dt} \\ $$$$=\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \int{e}^{−{n}\left({t}−\frac{\mathrm{1}}{\mathrm{2}{n}}\right)^{\mathrm{2}} } {dt}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({t}−\frac{\mathrm{1}}{\mathrm{2}{n}}\right)={u}\Rightarrow\mathrm{1}=\frac{{du}}{{dt}} \\ $$$$=\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \int{e}^{−{nu}^{\mathrm{2}} } {du}\:\:\:\:\:\:\:\:\:\:\:\:{nu}^{\mathrm{2}} ={p}\Rightarrow\mathrm{2}{nu}=\frac{{dp}}{{du}} \\ $$$$=\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \int\underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{nu}^{\mathrm{2}} \right)^{{k}} }{{k}!}{du} \\ $$$$=\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{n}\right)^{{k}} }{{k}!}.\frac{{u}^{\mathrm{2}{k}+\mathrm{1}} }{\mathrm{2}{k}+\mathrm{1}}=\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{n}\right)^{{k}} }{{k}!}.\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\left({x}−\frac{\mathrm{1}}{\mathrm{2}{n}}−\mathrm{2}\right)^{\mathrm{2}{k}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{n}\right)^{{k}} }{{k}!}.\frac{\left({x}−\frac{\mathrm{1}}{\mathrm{2}{n}}−\mathrm{2}\right)^{\mathrm{2}{k}+\mathrm{1}} }{\mathrm{2}{k}+\mathrm{1}}+\frac{{C}}{{e}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}{e}^{\frac{\mathrm{1}}{\mathrm{4}{n}}} \underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{n}\right)^{{k}} }{{k}!} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com