Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 122358 by mathocean1 last updated on 16/Nov/20

Given a, b ∈[0;4]  309a+15c=226b  1) show that 2b≡0[3] and 3a≡1[5]

$${Given}\:{a},\:{b}\:\in\left[\mathrm{0};\mathrm{4}\right] \\ $$$$\mathrm{309}{a}+\mathrm{15}{c}=\mathrm{226}{b} \\ $$$$\left.\mathrm{1}\right)\:{show}\:{that}\:\mathrm{2}{b}\equiv\mathrm{0}\left[\mathrm{3}\right]\:{and}\:\mathrm{3}{a}\equiv\mathrm{1}\left[\mathrm{5}\right] \\ $$$$ \\ $$

Answered by mindispower last updated on 16/Nov/20

309a+15c=226b=225b+b  309a+15c=3(103a+5c)≡0[3]  ⇒3(75b)+b≡0[3]⇔b≡0[3]⇒2b=0.2[3]≡0[3]  309a=226b−15c≡b[5]  309=4+5.61  ⇔4a≡b[5]⇒−a=b[5]⇒a=−b[5]  ⇒3a=2b[5]  2b=3k first result,⇒2b∈{0,6}  b=0⇒309.0+15.0=0,{0,0,0} solution  3a≠1[5]  b≠0⇒2b=6≡1[5]  3a=2b[5]⇔3a=1[5],we muste b∈[1,4]

$$\mathrm{309}{a}+\mathrm{15}{c}=\mathrm{226}{b}=\mathrm{225}{b}+{b} \\ $$$$\mathrm{309}{a}+\mathrm{15}{c}=\mathrm{3}\left(\mathrm{103}{a}+\mathrm{5}{c}\right)\equiv\mathrm{0}\left[\mathrm{3}\right] \\ $$$$\Rightarrow\mathrm{3}\left(\mathrm{75}{b}\right)+{b}\equiv\mathrm{0}\left[\mathrm{3}\right]\Leftrightarrow{b}\equiv\mathrm{0}\left[\mathrm{3}\right]\Rightarrow\mathrm{2}{b}=\mathrm{0}.\mathrm{2}\left[\mathrm{3}\right]\equiv\mathrm{0}\left[\mathrm{3}\right] \\ $$$$\mathrm{309}{a}=\mathrm{226}{b}−\mathrm{15}{c}\equiv{b}\left[\mathrm{5}\right] \\ $$$$\mathrm{309}=\mathrm{4}+\mathrm{5}.\mathrm{61} \\ $$$$\Leftrightarrow\mathrm{4}{a}\equiv{b}\left[\mathrm{5}\right]\Rightarrow−{a}={b}\left[\mathrm{5}\right]\Rightarrow{a}=−{b}\left[\mathrm{5}\right] \\ $$$$\Rightarrow\mathrm{3}{a}=\mathrm{2}{b}\left[\mathrm{5}\right] \\ $$$$\mathrm{2}{b}=\mathrm{3}{k}\:{first}\:{result},\Rightarrow\mathrm{2}{b}\in\left\{\mathrm{0},\mathrm{6}\right\} \\ $$$${b}=\mathrm{0}\Rightarrow\mathrm{309}.\mathrm{0}+\mathrm{15}.\mathrm{0}=\mathrm{0},\left\{\mathrm{0},\mathrm{0},\mathrm{0}\right\}\:{solution} \\ $$$$\mathrm{3}{a}\neq\mathrm{1}\left[\mathrm{5}\right] \\ $$$${b}\neq\mathrm{0}\Rightarrow\mathrm{2}{b}=\mathrm{6}\equiv\mathrm{1}\left[\mathrm{5}\right] \\ $$$$\mathrm{3}{a}=\mathrm{2}{b}\left[\mathrm{5}\right]\Leftrightarrow\mathrm{3}{a}=\mathrm{1}\left[\mathrm{5}\right],{we}\:{muste}\:{b}\in\left[\mathrm{1},\mathrm{4}\right] \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mathocean1 last updated on 18/Nov/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com