Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 12209 by tawa last updated on 16/Apr/17

For all n ≥ 1 ,  n ∈ Z,  prove that,   p(n) : 4 + 8 + ... + 4n = 2n(n + 1)

$$\mathrm{For}\:\mathrm{all}\:\mathrm{n}\:\geqslant\:\mathrm{1}\:,\:\:\mathrm{n}\:\in\:\mathrm{Z},\:\:\mathrm{prove}\:\mathrm{that},\: \\ $$$$\mathrm{p}\left(\mathrm{n}\right)\::\:\mathrm{4}\:+\:\mathrm{8}\:+\:...\:+\:\mathrm{4n}\:=\:\mathrm{2n}\left(\mathrm{n}\:+\:\mathrm{1}\right) \\ $$

Commented by tawa last updated on 16/Apr/17

please show me full workings sirs. God bless you all.

$$\mathrm{please}\:\mathrm{show}\:\mathrm{me}\:\mathrm{full}\:\mathrm{workings}\:\mathrm{sirs}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{all}. \\ $$

Answered by mrW1 last updated on 16/Apr/17

S=4+8+...+4n  (S/4)=1+2+...+n  (S/4)=n+...+2+1  (S/4)+(S/4)=(1+n)+...+(n+1)=n(n+1)  (S/2)=n(n+1)  ⇒S=2n(n+1)

$${S}=\mathrm{4}+\mathrm{8}+...+\mathrm{4}{n} \\ $$$$\frac{{S}}{\mathrm{4}}=\mathrm{1}+\mathrm{2}+...+{n} \\ $$$$\frac{{S}}{\mathrm{4}}={n}+...+\mathrm{2}+\mathrm{1} \\ $$$$\frac{{S}}{\mathrm{4}}+\frac{{S}}{\mathrm{4}}=\left(\mathrm{1}+{n}\right)+...+\left({n}+\mathrm{1}\right)={n}\left({n}+\mathrm{1}\right) \\ $$$$\frac{{S}}{\mathrm{2}}={n}\left({n}+\mathrm{1}\right) \\ $$$$\Rightarrow{S}=\mathrm{2}{n}\left({n}+\mathrm{1}\right) \\ $$

Commented by tawa last updated on 16/Apr/17

i appreciate sir. God bless you.

$$\mathrm{i}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com