Question Number 122053 by 676597498 last updated on 13/Nov/20 | ||
$$\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{E}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)=? \\ $$$$\mathrm{E}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{common} \\ $$$$\mathrm{interger}\:\mathrm{of}\:\mathrm{x} \\ $$ | ||
Commented by mr W last updated on 13/Nov/20 | ||
$${x}−\left[{x}\right]=\left\{{x}\right\} \\ $$$$\Rightarrow\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{E}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\left\{{x}+\frac{\mathrm{1}}{\mathrm{2}}\right\} \\ $$ | ||
Commented by 676597498 last updated on 13/Nov/20 | ||
$$\mathrm{thanks} \\ $$$$\mathrm{wat}\:\mathrm{does}\:\left\{\mathrm{x}\right\}\:\mathrm{mean} \\ $$ | ||
Commented by mr W last updated on 13/Nov/20 | ||
$${the}\:{fractional}\:{part}\:{of}\:{x}: \\ $$$$\left\{{x}\right\}={x}−\left[{x}\right] \\ $$ | ||
Answered by mathmax by abdo last updated on 15/Nov/20 | ||
$$\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}−\left[\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right]\:=\left\{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right\}\:\:\:\left(\mathrm{u}−\left[\mathrm{u}\right]=\left\{\mathrm{u}\right\}\right) \\ $$ | ||