Question Number 121875 by rs4089 last updated on 12/Nov/20 | ||
Answered by Dwaipayan Shikari last updated on 12/Nov/20 | ||
$$\frac{\pi^{\mathrm{4}} }{\mathrm{90}} \\ $$ | ||
Answered by Dwaipayan Shikari last updated on 12/Nov/20 | ||
$$\frac{{sin}\pi{x}}{\pi{x}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$$\frac{{sinu}}{{u}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\pi^{\mathrm{2}} {n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{6}}+\frac{{u}^{\mathrm{4}} }{\mathrm{120}}−...=\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\pi^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{4}\pi^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{9}\pi^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{16}\pi^{\mathrm{2}} }\right)... \\ $$$$\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{6}}+\frac{{u}^{\mathrm{4}} }{\mathrm{120}}−...=\mathrm{1}−\left(\frac{{u}^{\mathrm{2}} }{\pi^{\mathrm{2}} }+\frac{{u}^{\mathrm{2}} }{\mathrm{4}\pi^{\mathrm{2}} }+...\right)+\frac{\mathrm{3}}{\mathrm{4}}\left(\frac{{u}^{\mathrm{4}} }{\pi^{\mathrm{4}} }+\frac{{u}^{\mathrm{4}} }{\mathrm{16}\pi^{\mathrm{4}} }+...\right)+.... \\ $$$$\frac{{u}^{\mathrm{2}} }{\mathrm{6}}={u}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\pi^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}\pi^{\mathrm{2}} }+...\right) \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{9}}+..=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\frac{{u}^{\mathrm{4}} }{\mathrm{120}}=\frac{\mathrm{3}}{\mathrm{4}}\left(\frac{{u}^{\mathrm{4}} }{\pi^{\mathrm{4}} }+\frac{{u}^{\mathrm{4}} }{\mathrm{16}\pi^{\mathrm{4}} }+.....\right) \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{81}}+...=\frac{\pi^{\mathrm{4}} }{\mathrm{90}} \\ $$ | ||
Commented by mnjuly1970 last updated on 12/Nov/20 | ||
$${nice}\:\:{very}\:{nice}\: \\ $$$${without}\:{using}\:{the}\:{fourier}\:{series}\: \\ $$$${thank}\:{you}... \\ $$ | ||
Commented by Dwaipayan Shikari last updated on 12/Nov/20 | ||
with pleasure sir! | ||