Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 121353 by john santu last updated on 06/Nov/20

Answered by liberty last updated on 07/Nov/20

Let x be the x−coordinate of end point   that lies on the x−axis and let the other  endpoint be (0,y). Thus there is a function  f which gives y in terms of x. Since    x^2 +y^2 =1 we have f(x)=(√(1−x^2 ))  (0≤x≤1)  and for each x , the area enclosed is   A(x)=(1/2)xf(x) = (1/2)x(√(1−x^2 ))  we need investigasi the function A  for maxima.Now A′(x)=(1/2) [ ((−x^2 )/( (√(1−x^2 ))))+(√(1−x^2 )) ]  A′(x)= −(1/2) ((2x^2 −1)/( (√(1−x^2 ))))  = 0  when x = ± ((√2)/2) . Since we are concerned  only with numbers on interval [ 0,1 ]  only x = ((√2)/2). Here A = (1/4) is maximum  area of triangle

$$\mathrm{Let}\:\mathrm{x}\:\mathrm{be}\:\mathrm{the}\:\mathrm{x}−\mathrm{coordinate}\:\mathrm{of}\:\mathrm{end}\:\mathrm{point}\: \\ $$$$\mathrm{that}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{x}−\mathrm{axis}\:\mathrm{and}\:\mathrm{let}\:\mathrm{the}\:\mathrm{other} \\ $$$$\mathrm{endpoint}\:\mathrm{be}\:\left(\mathrm{0},\mathrm{y}\right).\:\mathrm{Thus}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function} \\ $$$$\mathrm{f}\:\mathrm{which}\:\mathrm{gives}\:\mathrm{y}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{x}.\:\mathrm{Since} \\ $$$$\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{1}\:\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\left(\mathrm{0}\leqslant\mathrm{x}\leqslant\mathrm{1}\right) \\ $$$$\mathrm{and}\:\mathrm{for}\:\mathrm{each}\:\mathrm{x}\:,\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclosed}\:\mathrm{is}\: \\ $$$$\mathrm{A}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{xf}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${we}\:{need}\:{investigasi}\:{the}\:{function}\:{A} \\ $$$$\mathrm{for}\:\mathrm{maxima}.\mathrm{Now}\:\mathrm{A}'\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\frac{−\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\right] \\ $$$$\mathrm{A}'\left(\mathrm{x}\right)=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{2x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\:=\:\mathrm{0} \\ $$$$\mathrm{when}\:{x}\:=\:\pm\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:.\:\mathrm{Since}\:\mathrm{we}\:\mathrm{are}\:\mathrm{concerned} \\ $$$$\mathrm{only}\:\mathrm{with}\:\mathrm{numbers}\:\mathrm{on}\:\mathrm{interval}\:\left[\:\mathrm{0},\mathrm{1}\:\right] \\ $$$$\mathrm{only}\:{x}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}.\:{H}\mathrm{ere}\:\mathrm{A}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{triangle} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com