Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 121337 by ajfour last updated on 06/Nov/20

Commented by ajfour last updated on 06/Nov/20

Find ratio  (s/R) , where s is side  lengths of the two equilateral  triangles and R the radius of   the semicircle.

$${Find}\:{ratio}\:\:\frac{{s}}{{R}}\:,\:{where}\:{s}\:{is}\:{side} \\ $$$${lengths}\:{of}\:{the}\:{two}\:{equilateral} \\ $$$${triangles}\:{and}\:{R}\:{the}\:{radius}\:{of}\: \\ $$$${the}\:{semicircle}. \\ $$

Commented by MJS_new last updated on 06/Nov/20

the common vertex of the triangles is the  center of the circle ⇒ s is the radius of this  circle ⇒ 2R≤2s ... please check it!

$$\mathrm{the}\:\mathrm{common}\:\mathrm{vertex}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangles}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\Rightarrow\:{s}\:\mathrm{is}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{this} \\ $$$$\mathrm{circle}\:\Rightarrow\:\mathrm{2}{R}\leqslant\mathrm{2}{s}\:...\:\mathrm{please}\:\mathrm{check}\:\mathrm{it}! \\ $$

Commented by ajfour last updated on 07/Nov/20

yes sir,  very silly question, pardon me.

$${yes}\:{sir},\:\:{very}\:{silly}\:{question},\:{pardon}\:{me}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com