Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121328 by Maclaurin Stickker last updated on 06/Nov/20

Commented by Maclaurin Stickker last updated on 06/Nov/20

The square has side 1. What is the  red area?

$${The}\:{square}\:{has}\:{side}\:\mathrm{1}.\:{What}\:{is}\:{the} \\ $$$${red}\:{area}? \\ $$

Answered by TANMAY PANACEA last updated on 06/Nov/20

(1/4)th circle centre D(0,0) x^2 +y^2 =1^2 s  (1/4)th circle centre C(1,0) (x−1)^2 +y^2 =1  semi circle  centre((1/(2 )),1) (x−(1/2))^2 +(y−1)^2 =((1/2))^2   ★y=1+(√((1/4)−(x−(1/2))^2 )) ★  point F  solve  (x−1)^2 +y^2 =1  and (x−(1/2))^2 +(y−1)^2 =(1/4)  x^2 −2x+y^2 =0  x^2 −x+(1/4)+y^2 −2y+1=(1/4)  −x+2x−2y+1=0 x=2y−1  4y^2 −4y+1−4y+2+y^2 =0  5y^2 −8y+3=0  5y^2 −5y−3y+3=0  5y(y−1)−3(y−1)=0  y=1  and (3/5)   so x=1 and (1/5)  point F((1/5),(3/5))  G((4/5),(3/5))  point E  solve x^2 +y^2 =1  (x−1)^2 +y^2 =1  x^2 =x^2 −2x+1→x=(1/2)  E((1/2),((√3)/2))  so area of( red portion+small circle)=  ∫_(1/5) ^(1/2) (√(1−(x−1)^2 )) dx+∫_(1/2) ^(4/5) (√(1−x^2 )) dx−∫_(1/5) ^(4/5) 1+(√((1/4)−(x−(1/2))^2 )) dx  let the value of this intregal say =p  area of small circle is Q  so answer will be=P−Q

$$\frac{\mathrm{1}}{\mathrm{4}}{th}\:{circle}\:{centre}\:{D}\left(\mathrm{0},\mathrm{0}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} {s} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{th}\:{circle}\:{centre}\:{C}\left(\mathrm{1},\mathrm{0}\right)\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${semi}\:{circle}\:\:{centre}\left(\frac{\mathrm{1}}{\mathrm{2}\:},\mathrm{1}\right)\:\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\bigstar{y}=\mathrm{1}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\bigstar \\ $$$${point}\:{F}\:\:{solve} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\:\:{and}\:\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}+\frac{\mathrm{1}}{\mathrm{4}}+{y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$−{x}+\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{1}=\mathrm{0}\:{x}=\mathrm{2}{y}−\mathrm{1} \\ $$$$\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{1}−\mathrm{4}{y}+\mathrm{2}+{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{5}{y}^{\mathrm{2}} −\mathrm{8}{y}+\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{5}{y}^{\mathrm{2}} −\mathrm{5}{y}−\mathrm{3}{y}+\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{5}{y}\left({y}−\mathrm{1}\right)−\mathrm{3}\left({y}−\mathrm{1}\right)=\mathrm{0} \\ $$$${y}=\mathrm{1}\:\:{and}\:\frac{\mathrm{3}}{\mathrm{5}}\:\:\:{so}\:{x}=\mathrm{1}\:{and}\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${point}\:{F}\left(\frac{\mathrm{1}}{\mathrm{5}},\frac{\mathrm{3}}{\mathrm{5}}\right)\:\:{G}\left(\frac{\mathrm{4}}{\mathrm{5}},\frac{\mathrm{3}}{\mathrm{5}}\right) \\ $$$${point}\:{E} \\ $$$${solve}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${x}^{\mathrm{2}} ={x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${E}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$${so}\:{area}\:{of}\left(\:{red}\:{portion}+{small}\:{circle}\right)= \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}−\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:{dx}+\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{4}}{\mathrm{5}}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}−\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\frac{\mathrm{4}}{\mathrm{5}}} \mathrm{1}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\:{dx} \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{this}}\:\boldsymbol{{intregal}}\:\boldsymbol{{say}}\:=\boldsymbol{{p}} \\ $$$$\boldsymbol{{area}}\:\boldsymbol{{of}}\:\boldsymbol{{small}}\:\boldsymbol{{circle}}\:\boldsymbol{{is}}\:\boldsymbol{{Q}} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{answer}}\:\boldsymbol{{will}}\:\boldsymbol{{be}}=\boldsymbol{{P}}−{Q} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com