Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 121201 by Ar Brandon last updated on 05/Nov/20

Commented by Ar Brandon last updated on 06/Nov/20

Commented by MJS_new last updated on 06/Nov/20

I get 2/2/1/3 solutions  Ar  Br  Ct  Dq

$$\mathrm{I}\:\mathrm{get}\:\mathrm{2}/\mathrm{2}/\mathrm{1}/\mathrm{3}\:\mathrm{solutions} \\ $$$${Ar}\:\:{Br}\:\:{Ct}\:\:{Dq} \\ $$

Commented by MJS_new last updated on 06/Nov/20

B is a special case because at x=0 both  logarithms are complex but the imaginary  part cancels out. strictly real calculation  leads to only one solution

$${B}\:\mathrm{is}\:\mathrm{a}\:\mathrm{special}\:\mathrm{case}\:\mathrm{because}\:\mathrm{at}\:{x}=\mathrm{0}\:\mathrm{both} \\ $$$$\mathrm{logarithms}\:\mathrm{are}\:\mathrm{complex}\:\mathrm{but}\:\mathrm{the}\:\mathrm{imaginary} \\ $$$$\mathrm{part}\:\mathrm{cancels}\:\mathrm{out}.\:\mathrm{strictly}\:\mathrm{real}\:\mathrm{calculation} \\ $$$$\mathrm{leads}\:\mathrm{to}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution} \\ $$

Commented by Ar Brandon last updated on 06/Nov/20

Thanks Sir. For D after solving I had 3 solutions then rejected 3–√2 making them 2 solutions. Did you notice that too ? Or I made the mistake ?

Commented by liberty last updated on 06/Nov/20

D have double roots x_1 =x_2 =3.  then the number of solution is 3

$$\mathrm{D}\:\mathrm{have}\:\mathrm{double}\:\mathrm{roots}\:\mathrm{x}_{\mathrm{1}} =\mathrm{x}_{\mathrm{2}} =\mathrm{3}. \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{3} \\ $$

Commented by MJS_new last updated on 06/Nov/20

it′s not clear. you could say a double root  is only one solution...

$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{clear}.\:\mathrm{you}\:\mathrm{could}\:\mathrm{say}\:\mathrm{a}\:\mathrm{double}\:\mathrm{root} \\ $$$$\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution}... \\ $$

Answered by liberty last updated on 06/Nov/20

(2c) log _3 (3^x −8)=log _3 (3^(2−x) )  ⇒ numerus 3^x  >8⇒x>3^(log _3 (8))   ⇔ 3^x −8=(9/3^x ) ; (3^x )^2 −8.3^x −9=0  ⇔ (3^x +1)(3^x −9)=0→ { ((3^x =9⇒x=2)),((3^x =−1(rejected))) :}  The number of solution is 1

$$\left(\mathrm{2c}\right)\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{3}^{\mathrm{x}} −\mathrm{8}\right)=\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{3}^{\mathrm{2}−\mathrm{x}} \right) \\ $$$$\Rightarrow\:\mathrm{numerus}\:\mathrm{3}^{\mathrm{x}} \:>\mathrm{8}\Rightarrow\mathrm{x}>\mathrm{3}^{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{8}\right)} \\ $$$$\Leftrightarrow\:\mathrm{3}^{\mathrm{x}} −\mathrm{8}=\frac{\mathrm{9}}{\mathrm{3}^{\mathrm{x}} }\:;\:\left(\mathrm{3}^{\mathrm{x}} \right)^{\mathrm{2}} −\mathrm{8}.\mathrm{3}^{\mathrm{x}} −\mathrm{9}=\mathrm{0} \\ $$$$\Leftrightarrow\:\left(\mathrm{3}^{\mathrm{x}} +\mathrm{1}\right)\left(\mathrm{3}^{\mathrm{x}} −\mathrm{9}\right)=\mathrm{0}\rightarrow\begin{cases}{\mathrm{3}^{\mathrm{x}} =\mathrm{9}\Rightarrow\mathrm{x}=\mathrm{2}}\\{\mathrm{3}^{\mathrm{x}} =−\mathrm{1}\left(\mathrm{rejected}\right)}\end{cases} \\ $$$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{1} \\ $$

Answered by liberty last updated on 06/Nov/20

(2A) log _(10) (3x^2 +12x+19)−log _(10) (3x+4)=1  ⇒log _(10) (3x^2 +12x+19)=log _(10) (30x+40)  ⇒3x^2 +12x+19−30x−40=0  ⇒3x^2 −18x−21=0  ⇒x^2 −6x−7=0 ;(x−7)(x+1)=0    { ((x=7)),((x=−1→ { ((3.(−1)+4>0)),((3(−1)^2 +12(−1)+19>0)) :})) :}  The number of solution is 2

$$\left(\mathrm{2A}\right)\:\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{3x}^{\mathrm{2}} +\mathrm{12x}+\mathrm{19}\right)−\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{3x}+\mathrm{4}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{3x}^{\mathrm{2}} +\mathrm{12x}+\mathrm{19}\right)=\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{30x}+\mathrm{40}\right) \\ $$$$\Rightarrow\mathrm{3x}^{\mathrm{2}} +\mathrm{12x}+\mathrm{19}−\mathrm{30x}−\mathrm{40}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3x}^{\mathrm{2}} −\mathrm{18x}−\mathrm{21}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{6x}−\mathrm{7}=\mathrm{0}\:;\left(\mathrm{x}−\mathrm{7}\right)\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\begin{cases}{\mathrm{x}=\mathrm{7}}\\{\mathrm{x}=−\mathrm{1}\rightarrow\begin{cases}{\mathrm{3}.\left(−\mathrm{1}\right)+\mathrm{4}>\mathrm{0}}\\{\mathrm{3}\left(−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{12}\left(−\mathrm{1}\right)+\mathrm{19}>\mathrm{0}}\end{cases}}\end{cases} \\ $$$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{2}\: \\ $$

Answered by liberty last updated on 06/Nov/20

(2D)2log _3 (x−2)+log _3 (x−4)^2 =0  numerus  { ((x>2)),((x≠4)) :} ⇔ x∈(2,4) ∪(4,∞)  ⇒log _3 (x−2)^2 +log _3 (x−4)^2 =0  ⇒log _3 [(x−2)(x−4)]^2 = log _3 (1)  ⇒[(x−2)(x−4)]^2 =1  ⇒(x^2 −6x+8)^2 −1=0  ⇒(x^2 −6x+9)(x^2 −6x+7)=0   { (((x−3)^2 =0⇒x=3 ←double roots)),((x=((6±(√(36−28)))/2)=((6±2(√2))/2)=3±(√2))) :}  3+(√2)  4.414214  3−(√2) (rejected)   1.585786  The number of solution is 3

$$\left(\mathrm{2D}\right)\mathrm{2log}\:_{\mathrm{3}} \left(\mathrm{x}−\mathrm{2}\right)+\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{numerus}\:\begin{cases}{\mathrm{x}>\mathrm{2}}\\{\mathrm{x}\neq\mathrm{4}}\end{cases}\:\Leftrightarrow\:\mathrm{x}\in\left(\mathrm{2},\mathrm{4}\right)\:\cup\left(\mathrm{4},\infty\right) \\ $$$$\Rightarrow\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{log}\:_{\mathrm{3}} \left[\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{4}\right)\right]^{\mathrm{2}} =\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{1}\right) \\ $$$$\Rightarrow\left[\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{4}\right)\right]^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{8}\right)^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{9}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{7}\right)=\mathrm{0} \\ $$$$\begin{cases}{\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{3}\:\leftarrow\mathrm{double}\:\mathrm{roots}}\\{\mathrm{x}=\frac{\mathrm{6}\pm\sqrt{\mathrm{36}−\mathrm{28}}}{\mathrm{2}}=\frac{\mathrm{6}\pm\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}}=\mathrm{3}\pm\sqrt{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{3}+\sqrt{\mathrm{2}} \\ $$$$\mathrm{4}.\mathrm{414214} \\ $$$$\mathrm{3}−\sqrt{\mathrm{2}}\:\left(\mathrm{rejected}\right)\: \\ $$$$\mathrm{1}.\mathrm{585786} \\ $$$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{3} \\ $$

Commented by Ar Brandon last updated on 06/Nov/20

Thanks�� Please can you have a look at the answers suggested by the book ?

Commented by Ar Brandon last updated on 06/Nov/20

There seem to be some contradictions I think. I too got some answers similar to yours but later on I had some doubts due to these contradictions

Terms of Service

Privacy Policy

Contact: info@tinkutara.com