Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121099 by Anuragkar last updated on 05/Nov/20

Let α be a root of  x^5 −x^3 +x−2=0  Then prove that   [α^6 ]=3       where[λ]  denotes greatest integer  less than or  equal λ

$${Let}\:\alpha\:{be}\:{a}\:{root}\:{of}\:\:{x}^{\mathrm{5}} −{x}^{\mathrm{3}} +{x}−\mathrm{2}=\mathrm{0} \\ $$$${Then}\:{prove}\:{that}\:\:\:\left[\alpha^{\mathrm{6}} \right]=\mathrm{3}\:\:\:\:\:\:\:{where}\left[\lambda\right]\:\:{denotes}\:{greatest}\:{integer} \\ $$$${less}\:{than}\:{or}\:\:{equal}\:\lambda \\ $$

Answered by TANMAY PANACEA last updated on 05/Nov/20

f(x)=x^5 −x^3 +x−2  f(0)<0  f(1)<0  f(2)>0  so root   2>α>1   using graph app ..α=1.206→α^6 ≈3.08  [α^6 ]  =[3.08]=3

$${f}\left({x}\right)={x}^{\mathrm{5}} −{x}^{\mathrm{3}} +{x}−\mathrm{2} \\ $$$${f}\left(\mathrm{0}\right)<\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)<\mathrm{0} \\ $$$${f}\left(\mathrm{2}\right)>\mathrm{0} \\ $$$${so}\:{root}\:\:\:\mathrm{2}>\alpha>\mathrm{1}\: \\ $$$${using}\:{graph}\:{app}\:..\alpha=\mathrm{1}.\mathrm{206}\rightarrow\alpha^{\mathrm{6}} \approx\mathrm{3}.\mathrm{08} \\ $$$$\left[\alpha^{\mathrm{6}} \right] \\ $$$$=\left[\mathrm{3}.\mathrm{08}\right]=\mathrm{3} \\ $$$$ \\ $$

Commented by TANMAY PANACEA last updated on 05/Nov/20

Commented by Anuragkar last updated on 13/Nov/20

good approach.....but the matter of fact is that is has become  too much calculation based....in an examhall   u will not calculate such huge values...  I suggest u to take help of some inequalities   to find the range of α

$${good}\:{approach}.....{but}\:{the}\:{matter}\:{of}\:{fact}\:{is}\:{that}\:{is}\:{has}\:{become} \\ $$$${too}\:{much}\:{calculation}\:{based}....{in}\:{an}\:{examhall}\: \\ $$$${u}\:{will}\:{not}\:{calculate}\:{such}\:{huge}\:{values}... \\ $$$${I}\:{suggest}\:{u}\:{to}\:{take}\:{help}\:{of}\:{some}\:{inequalities}\: \\ $$$${to}\:{find}\:{the}\:{range}\:{of}\:\alpha \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com