Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121029 by bramlexs22 last updated on 05/Nov/20

Commented by bobhans last updated on 05/Nov/20

super macho...!

$${super}\:{macho}...! \\ $$

Answered by MJS_new last updated on 05/Nov/20

super easy lol!  ∫(dx/(x^3 (x^6 +1)^(2/3) ))=       [t=(((x^6 +1)^(1/3) )/x^2 ) → dx=−((x^3 (x^6 +1)^(2/3) )/2)dt]  =−(1/2)∫dt=−(t/2)=−(((x^6 +1)^(1/3) )/(2x^2 ))+C

$$\mathrm{super}\:\mathrm{easy}\:\mathrm{lol}! \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{6}} +\mathrm{1}\right)^{\mathrm{2}/\mathrm{3}} }= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\left({x}^{\mathrm{6}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} }{{x}^{\mathrm{2}} }\:\rightarrow\:{dx}=−\frac{{x}^{\mathrm{3}} \left({x}^{\mathrm{6}} +\mathrm{1}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{2}}{dt}\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\int{dt}=−\frac{{t}}{\mathrm{2}}=−\frac{\left({x}^{\mathrm{6}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{2}{x}^{\mathrm{2}} }+{C} \\ $$

Commented by bobhans last updated on 05/Nov/20

haha...typo why denomurator  x^3 +(x^6 +1)^(2/3)  ?

$${haha}...{typo}\:{why}\:{denomurator} \\ $$$${x}^{\mathrm{3}} +\left({x}^{\mathrm{6}} +\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:?\: \\ $$

Commented by MJS_new last updated on 05/Nov/20

because key [ + ] very close to key [ ( ] on  display and typing in jolting bus

$$\mathrm{because}\:\mathrm{key}\:\left[\:+\:\right]\:\mathrm{very}\:\mathrm{close}\:\mathrm{to}\:\mathrm{key}\:\left[\:\left(\:\right]\:\mathrm{on}\right. \\ $$$$\mathrm{display}\:\mathrm{and}\:\mathrm{typing}\:\mathrm{in}\:\mathrm{jolting}\:\mathrm{bus} \\ $$

Commented by bramlexs22 last updated on 05/Nov/20

����������

Answered by bobhans last updated on 05/Nov/20

 η = ∫ (dx/(x^3 (x^6 (1+x^(−6) ))^(2/3) ))  η = ∫ (dx/(x^7 (1+x^(−6) )^(2/3) ))  η = ∫ ((x^(−7)  dx )/((1+x^(−6) )^(2/3) )) ; [ t = 1+x^(−6)  ]  η = −(1/6)∫ (dt/t^(2/3) ) = −(1/6)∫ t^(−2/3)  dt  η = −(1/2)t^(1/3)  + c = −(1/2)((1+x^(−6) ))^(1/3)  + c

$$\:\eta\:=\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{6}} \left(\mathrm{1}+{x}^{−\mathrm{6}} \right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$$$\eta\:=\:\int\:\frac{{dx}}{{x}^{\mathrm{7}} \left(\mathrm{1}+{x}^{−\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$$$\eta\:=\:\int\:\frac{{x}^{−\mathrm{7}} \:{dx}\:}{\left(\mathrm{1}+{x}^{−\mathrm{6}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:;\:\left[\:{t}\:=\:\mathrm{1}+{x}^{−\mathrm{6}} \:\right] \\ $$$$\eta\:=\:−\frac{\mathrm{1}}{\mathrm{6}}\int\:\frac{{dt}}{{t}^{\mathrm{2}/\mathrm{3}} }\:=\:−\frac{\mathrm{1}}{\mathrm{6}}\int\:{t}^{−\mathrm{2}/\mathrm{3}} \:{dt} \\ $$$$\eta\:=\:−\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{1}/\mathrm{3}} \:+\:{c}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{−\mathrm{6}} }\:+\:{c}\: \\ $$

Commented by MJS_new last updated on 05/Nov/20

also very nice!

$$\mathrm{also}\:\mathrm{very}\:\mathrm{nice}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com