Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 120923 by bemath last updated on 04/Nov/20

Determine all primes p for which  the system of equations    { ((p +1 = 2x^2 )),((p^2 +1=2y^2   )) :} ; has solution in  integers x, y.

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{primes}\:{p}\:\mathrm{for}\:\mathrm{which} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\: \\ $$$$\begin{cases}{{p}\:+\mathrm{1}\:=\:\mathrm{2x}^{\mathrm{2}} }\\{{p}^{\mathrm{2}} +\mathrm{1}=\mathrm{2y}^{\mathrm{2}} \:\:}\end{cases}\:;\:\mathrm{has}\:\mathrm{solution}\:\mathrm{in} \\ $$$$\mathrm{integers}\:\mathrm{x},\:\mathrm{y}. \\ $$

Answered by liberty last updated on 04/Nov/20

Note that p +1 =2x^2  is even so ≠ 2 also  2x^2 ≡1≡2y^2  (mod p) which implies x=±y. Since p is odd   and x<y<p we have x+y=p , then   p^2 +1=2(p−x)^2 =2p^2 −4px+p+1  give p = 4x−1 ; 2x^2 =4x, x is 0 or 2.  and p is −1 or 7. Of course −1 is not  prime^� , but p=7 is prime and (x,y)=(2,5) is a solution

$$\mathrm{Note}\:\mathrm{that}\:{p}\:+\mathrm{1}\:=\mathrm{2}{x}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{even}\:\mathrm{so}\:\neq\:\mathrm{2}\:\mathrm{also} \\ $$$$\mathrm{2x}^{\mathrm{2}} \equiv\mathrm{1}\equiv\mathrm{2y}^{\mathrm{2}} \:\left(\mathrm{mod}\:\mathrm{p}\right)\:\mathrm{which}\:\mathrm{implies}\:\mathrm{x}=\pm\mathrm{y}.\:\mathrm{Since}\:\mathrm{p}\:\mathrm{is}\:\mathrm{odd}\: \\ $$$$\mathrm{and}\:\mathrm{x}<\mathrm{y}<{p}\:\mathrm{we}\:\mathrm{have}\:\mathrm{x}+\mathrm{y}={p}\:,\:\mathrm{then}\: \\ $$$${p}^{\mathrm{2}} +\mathrm{1}=\mathrm{2}\left({p}−{x}\right)^{\mathrm{2}} =\mathrm{2}{p}^{\mathrm{2}} −\mathrm{4}{px}+{p}+\mathrm{1} \\ $$$${give}\:{p}\:=\:\mathrm{4}{x}−\mathrm{1}\:;\:\mathrm{2x}^{\mathrm{2}} =\mathrm{4x},\:\mathrm{x}\:\mathrm{is}\:\mathrm{0}\:\mathrm{or}\:\mathrm{2}. \\ $$$$\mathrm{and}\:{p}\:\mathrm{is}\:−\mathrm{1}\:\mathrm{or}\:\mathrm{7}.\:\mathrm{Of}\:\mathrm{course}\:−\mathrm{1}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{prim}\bar {\mathrm{e}},\:\mathrm{but}\:{p}=\mathrm{7}\:\mathrm{is}\:\mathrm{prime}\:\mathrm{and}\:\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{2},\mathrm{5}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com