Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 120679 by kaivan.ahmadi last updated on 02/Nov/20

h

$${h} \\ $$

Commented by bobhans last updated on 01/Nov/20

((−8))^(1/3)    (1.0 + 1.732051i)

$$\sqrt[{\mathrm{3}}]{−\mathrm{8}}\: \\ $$$$\left(\mathrm{1}.\mathrm{0}\:+\:\mathrm{1}.\mathrm{732051i}\right) \\ $$

Commented by bobhans last updated on 01/Nov/20

the result from calculator

$$\mathrm{the}\:\mathrm{result}\:\mathrm{from}\:\mathrm{calculator} \\ $$

Commented by mathmax by abdo last updated on 02/Nov/20

if a>0 and a≠1  we have a^x  =e^(xln(a))   if a<o ⇒ a^x  =(−(−a))^x  =(−1)^x (−a)^x  =(e^(iπ) )^x e^(xln(−a))   =e^(iπx)  e^(xln(−a) )  =(cosπx +isin(πx)e^(xln(−a))      (−a>0)  or a^x  =e^(xln(−a)+iπx)

$$\mathrm{if}\:\mathrm{a}>\mathrm{0}\:\mathrm{and}\:\mathrm{a}\neq\mathrm{1}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}^{\mathrm{x}} \:=\mathrm{e}^{\mathrm{xln}\left(\mathrm{a}\right)} \\ $$$$\mathrm{if}\:\mathrm{a}<\mathrm{o}\:\Rightarrow\:\mathrm{a}^{\mathrm{x}} \:=\left(−\left(−\mathrm{a}\right)\right)^{\mathrm{x}} \:=\left(−\mathrm{1}\right)^{\mathrm{x}} \left(−\mathrm{a}\right)^{\mathrm{x}} \:=\left(\mathrm{e}^{\mathrm{i}\pi} \right)^{\mathrm{x}} \mathrm{e}^{\mathrm{xln}\left(−\mathrm{a}\right)} \\ $$$$=\mathrm{e}^{\mathrm{i}\pi\mathrm{x}} \:\mathrm{e}^{\mathrm{xln}\left(−\mathrm{a}\right)\:} \:=\left(\mathrm{cos}\pi\mathrm{x}\:+\mathrm{isin}\left(\pi\mathrm{x}\right)\mathrm{e}^{\mathrm{xln}\left(−\mathrm{a}\right)} \:\:\:\:\:\left(−\mathrm{a}>\mathrm{0}\right)\right. \\ $$$$\mathrm{or}\:\mathrm{a}^{\mathrm{x}} \:=\mathrm{e}^{\mathrm{xln}\left(−\mathrm{a}\right)+\mathrm{i}\pi\mathrm{x}} \\ $$

Answered by MJS_new last updated on 01/Nov/20

but (−8)^(1/3)  is defined.  there are 2 definitions  (1) z∈C, r∈R^+ : z^(1/n) =(re^(iθ) )^(1/n) =r^(1/n) e^(i(θ/n))   (2) for θ=π∧ n=2k+1 we have z=re^(iπ) =−r       and define z^(1/(2k+1)) =(−r)^(1/(2k+1)) =−(r^(1/(2k+1)) )  this 2^(nd)  definition is “older” because in  basic mathematics it′s common to use it  ⇒ (−8)^(1/3) = { ((1+(√3)i)),((−2)) :}

$$\mathrm{but}\:\left(−\mathrm{8}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\boldsymbol{{is}}\:\mathrm{defined}. \\ $$$$\mathrm{there}\:\mathrm{are}\:\mathrm{2}\:\mathrm{definitions} \\ $$$$\left(\mathrm{1}\right)\:{z}\in\mathbb{C},\:{r}\in\mathbb{R}^{+} :\:{z}^{\frac{\mathrm{1}}{{n}}} =\left({r}\mathrm{e}^{\mathrm{i}\theta} \right)^{\frac{\mathrm{1}}{{n}}} ={r}^{\frac{\mathrm{1}}{{n}}} \mathrm{e}^{\mathrm{i}\frac{\theta}{{n}}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{for}\:\theta=\pi\wedge\:{n}=\mathrm{2}{k}+\mathrm{1}\:\mathrm{we}\:\mathrm{have}\:{z}={r}\mathrm{e}^{\mathrm{i}\pi} =−{r} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{define}\:{z}^{\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}} =\left(−{r}\right)^{\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}} =−\left({r}^{\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}} \right) \\ $$$$\mathrm{this}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{definition}\:\mathrm{is}\:``\mathrm{older}''\:\mathrm{because}\:\mathrm{in} \\ $$$$\mathrm{basic}\:\mathrm{mathematics}\:\mathrm{it}'\mathrm{s}\:\mathrm{common}\:\mathrm{to}\:\mathrm{use}\:\mathrm{it} \\ $$$$\Rightarrow\:\left(−\mathrm{8}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} =\begin{cases}{\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}}\\{−\mathrm{2}}\end{cases} \\ $$

Commented by bobhans last updated on 01/Nov/20

but sir why if we use a calculator  give the answer 1+ i(√3) ?

$$\mathrm{but}\:\mathrm{sir}\:\mathrm{why}\:\mathrm{if}\:\mathrm{we}\:\mathrm{use}\:\mathrm{a}\:\mathrm{calculator} \\ $$$$\mathrm{give}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{1}+\:{i}\sqrt{\mathrm{3}}\:? \\ $$

Commented by MJS_new last updated on 02/Nov/20

depends on the calculator. the ones for  high schools should give −2, the ones for  university give 1+(√3)i  I guess using the exceptions ((−27))^(1/3) =−3;  ((−32))^(1/5) =−2 etc. makes it impossible to  get a result for calculations like (−1)^(2/3)   and the exeptions do harm to functions  like f(x): y=(−1)^x  for x∈R∧y∈C  ⇒ most advanced calculators use  z^(p+qi) =(re^(iθ) )^(p+qi) =r^(p+qi) e^(−qθ+ipθ) =  =(r^p /e^(qθ) )e^(i(pθ+qln r))  which for q=0 gives r^p e^(ipθ)

$$\mathrm{depends}\:\mathrm{on}\:\mathrm{the}\:\mathrm{calculator}.\:\mathrm{the}\:\mathrm{ones}\:\mathrm{for} \\ $$$$\mathrm{high}\:\mathrm{schools}\:\mathrm{should}\:\mathrm{give}\:−\mathrm{2},\:\mathrm{the}\:\mathrm{ones}\:\mathrm{for} \\ $$$$\mathrm{university}\:\mathrm{give}\:\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i} \\ $$$$\mathrm{I}\:\mathrm{guess}\:\mathrm{using}\:\mathrm{the}\:\mathrm{exceptions}\:\sqrt[{\mathrm{3}}]{−\mathrm{27}}=−\mathrm{3}; \\ $$$$\sqrt[{\mathrm{5}}]{−\mathrm{32}}=−\mathrm{2}\:{etc}.\:\mathrm{makes}\:\mathrm{it}\:\mathrm{impossible}\:\mathrm{to} \\ $$$$\mathrm{get}\:\mathrm{a}\:\mathrm{result}\:\mathrm{for}\:\mathrm{calculations}\:\mathrm{like}\:\left(−\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{exeptions}\:\mathrm{do}\:\mathrm{harm}\:\mathrm{to}\:\mathrm{functions} \\ $$$$\mathrm{like}\:{f}\left({x}\right):\:{y}=\left(−\mathrm{1}\right)^{{x}} \:\mathrm{for}\:{x}\in\mathbb{R}\wedge{y}\in\mathbb{C} \\ $$$$\Rightarrow\:\mathrm{most}\:\mathrm{advanced}\:\mathrm{calculators}\:\mathrm{use} \\ $$$${z}^{{p}+{q}\mathrm{i}} =\left({r}\mathrm{e}^{\mathrm{i}\theta} \right)^{{p}+{q}\mathrm{i}} ={r}^{{p}+{q}\mathrm{i}} \mathrm{e}^{−{q}\theta+\mathrm{ip}\theta} = \\ $$$$=\frac{{r}^{{p}} }{\mathrm{e}^{{q}\theta} }\mathrm{e}^{{i}\left({p}\theta+{q}\mathrm{ln}\:{r}\right)} \:\mathrm{which}\:\mathrm{for}\:{q}=\mathrm{0}\:\mathrm{gives}\:{r}^{{p}} \mathrm{e}^{\mathrm{i}{p}\theta} \\ $$

Commented by bobhans last updated on 02/Nov/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by malwaan last updated on 02/Nov/20

(−8)^(1/3)  is defined  x=(−8)^(1/3)   ⇒x^3  = −8⇒x^3 +8=0  (x+2)(x^2 −2x+4)=0  ⇒x=−2  and x= 1± (√3)i

$$\left(−\mathrm{8}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{is}\:{defined} \\ $$$${x}=\left(−\mathrm{8}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\Rightarrow{x}^{\mathrm{3}} \:=\:−\mathrm{8}\Rightarrow{x}^{\mathrm{3}} +\mathrm{8}=\mathrm{0} \\ $$$$\left({x}+\mathrm{2}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=−\mathrm{2} \\ $$$${and}\:{x}=\:\mathrm{1}\pm\:\sqrt{\mathrm{3}}{i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com