Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 120601 by Don08q last updated on 01/Nov/20

 Find the range of values of x for    which the expansion of the binomial   (2 − 3x)^(−4)  is valid.    I need help with explanation please

$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{for}\: \\ $$$$\:\mathrm{which}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{binomial} \\ $$$$\:\left(\mathrm{2}\:−\:\mathrm{3}{x}\right)^{−\mathrm{4}} \:\mathrm{is}\:\mathrm{valid}.\: \\ $$$$\:{I}\:{need}\:{help}\:{with}\:{explanation}\:{please} \\ $$

Answered by Ar Brandon last updated on 01/Nov/20

Range: ∣3x∣<2              ⇒−2<3x<2             ⇒−(2/3)<x<(2/3)

$$\mathrm{Range}:\:\mid\mathrm{3x}\mid<\mathrm{2}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow−\mathrm{2}<\mathrm{3x}<\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow−\frac{\mathrm{2}}{\mathrm{3}}<\mathrm{x}<\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by Don08q last updated on 01/Nov/20

 why is it valid for this range please?

$$\:{why}\:{is}\:{it}\:{valid}\:{for}\:{this}\:{range}\:{please}? \\ $$$$ \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 01/Nov/20

if ∣2−3x∣=0  (1/((2−3x)^4 )) will be infinite or undefined

$${if}\:\mid\mathrm{2}−\mathrm{3}{x}\mid=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{3}{x}\right)^{\mathrm{4}} }\:{will}\:{be}\:{infinite}\:{or}\:{undefined} \\ $$

Commented by Dwaipayan Shikari last updated on 01/Nov/20

If x=−(2/3)  (2−3x)=4  So it must be −(2/3)≤x<(2/3)

$${If}\:{x}=−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\left(\mathrm{2}−\mathrm{3}{x}\right)=\mathrm{4} \\ $$$${So}\:{it}\:{must}\:{be}\:−\frac{\mathrm{2}}{\mathrm{3}}\leqslant{x}<\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by Don08q last updated on 02/Nov/20

Alright. Thank you.

$${Alright}.\:{Thank}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com