Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 119364 by bobhans last updated on 24/Oct/20

Suppose once more we′re asked   to choose four students from high school  class of 15 to form a committee  but this time we have a restriction  : we don′t want to committee to  consist of all seniors or all juniors  .suppose there are eight seniors  and seven juniors in the class. How many  different committe can we form?

$${Suppose}\:{once}\:{more}\:{we}'{re}\:{asked}\: \\ $$$${to}\:{choose}\:{four}\:{students}\:{from}\:{high}\:{school} \\ $$$${class}\:{of}\:\mathrm{15}\:{to}\:{form}\:{a}\:{committee} \\ $$$${but}\:{this}\:{time}\:{we}\:{have}\:{a}\:{restriction} \\ $$$$:\:{we}\:{don}'{t}\:{want}\:{to}\:{committee}\:{to} \\ $$$${consist}\:{of}\:{all}\:{seniors}\:{or}\:{all}\:{juniors} \\ $$$$.{suppose}\:{there}\:{are}\:{eight}\:{seniors} \\ $$$${and}\:{seven}\:{juniors}\:{in}\:{the}\:{class}.\:{How}\:{many} \\ $$$${different}\:{committe}\:{can}\:{we}\:{form}? \\ $$$$ \\ $$

Answered by john santu last updated on 24/Oct/20

This clearly call for subtraction principle  The total number of possible committe is      (((15)),((  4)) ) = ((15×14×13×12)/(4×3×2×1)) = 1,365  The number of committe consisting all senior is      ((8),(4) ) = ((8×7×6×5)/(4×3×2×1)) = 70  and the number of committe consisting all  juniors is  ((7),(4) ) = ((7×6×5×4)/(4×3×2×1))= 35  if we exlude those , we see that the   number of allowable committe is   1,365−70−35 = 1,260

$${This}\:{clearly}\:{call}\:{for}\:{subtraction}\:{principle} \\ $$$${The}\:{total}\:{number}\:{of}\:{possible}\:{committe}\:{is} \\ $$$$\:\:\:\begin{pmatrix}{\mathrm{15}}\\{\:\:\mathrm{4}}\end{pmatrix}\:=\:\frac{\mathrm{15}×\mathrm{14}×\mathrm{13}×\mathrm{12}}{\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}\:=\:\mathrm{1},\mathrm{365} \\ $$$${The}\:{number}\:{of}\:{committe}\:{consisting}\:{all}\:{senior}\:{is} \\ $$$$\:\:\:\begin{pmatrix}{\mathrm{8}}\\{\mathrm{4}}\end{pmatrix}\:=\:\frac{\mathrm{8}×\mathrm{7}×\mathrm{6}×\mathrm{5}}{\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}\:=\:\mathrm{70} \\ $$$${and}\:{the}\:{number}\:{of}\:{committe}\:{consisting}\:{all} \\ $$$${juniors}\:{is}\:\begin{pmatrix}{\mathrm{7}}\\{\mathrm{4}}\end{pmatrix}\:=\:\frac{\mathrm{7}×\mathrm{6}×\mathrm{5}×\mathrm{4}}{\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}=\:\mathrm{35} \\ $$$${if}\:{we}\:{exlude}\:{those}\:,\:{we}\:{see}\:{that}\:{the}\: \\ $$$${number}\:{of}\:{allowable}\:{committe}\:{is} \\ $$$$\:\mathrm{1},\mathrm{365}−\mathrm{70}−\mathrm{35}\:=\:\mathrm{1},\mathrm{260} \\ $$

Commented by bobhans last updated on 24/Oct/20

nice...

$${nice}... \\ $$

Answered by mr W last updated on 24/Oct/20

C_1 ^7 C_3 ^8 +C_2 ^7 C_2 ^8 +C_3 ^7 C_1 ^8 =1260

$${C}_{\mathrm{1}} ^{\mathrm{7}} {C}_{\mathrm{3}} ^{\mathrm{8}} +{C}_{\mathrm{2}} ^{\mathrm{7}} {C}_{\mathrm{2}} ^{\mathrm{8}} +{C}_{\mathrm{3}} ^{\mathrm{7}} {C}_{\mathrm{1}} ^{\mathrm{8}} =\mathrm{1260} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com