Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 119124 by abdullahquwatan last updated on 22/Oct/20

if matrix A^2  =  (((1  3)),((0  1)) )  then matrix A=...

$$\mathrm{if}\:\mathrm{matrix}\:\mathrm{A}^{\mathrm{2}} \:=\:\begin{pmatrix}{\mathrm{1}\:\:\mathrm{3}}\\{\mathrm{0}\:\:\mathrm{1}}\end{pmatrix}\:\:\mathrm{then}\:\mathrm{matrix}\:\mathrm{A}=... \\ $$

Answered by benjo_mathlover last updated on 22/Oct/20

⇔ A=  (((1   (3/2))),((0    1)) )  A^2  =  (((1    (3/2))),((0      1)) )  (((1     (3/2))),((0      1)) ) =  (((1    (6/2))),((0      1)) )

$$\Leftrightarrow\:{A}=\:\begin{pmatrix}{\mathrm{1}\:\:\:\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${A}^{\mathrm{2}} \:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\frac{\mathrm{6}}{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$

Commented by abdullahquwatan last updated on 22/Oct/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mindispower last updated on 23/Oct/20

det(A^2 )=1,if det A=1  det(A^2 −aI_2 )=0⇒a=1  if det(A−I_2 )=0  A= (((a   b)),((c    d)) )  X^2 −(a+d)X+det(A)=P(X)  P(1)=1−(a+d)+1=0⇒a+d=2  A^2 = (((a^2 +bc      ba+bd)),((ac+cd      bc+d^2 )) )  ac+cd=c(a+d)=0⇒c=0  ba+bd=b(a+d)=2b=3⇒b=(3/2)  bc+d^2 =1⇒d=+_− 1  a=+_− 1,a+d=2⇒a=d=1  A= (((1      (3/2))),((0       1)) )

$${det}\left({A}^{\mathrm{2}} \right)=\mathrm{1},{if}\:{det}\:{A}=\mathrm{1} \\ $$$${det}\left({A}^{\mathrm{2}} −{aI}_{\mathrm{2}} \right)=\mathrm{0}\Rightarrow{a}=\mathrm{1} \\ $$$${if}\:{det}\left({A}−{I}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$${A}=\begin{pmatrix}{{a}\:\:\:{b}}\\{{c}\:\:\:\:{d}}\end{pmatrix} \\ $$$${X}^{\mathrm{2}} −\left({a}+{d}\right){X}+{det}\left({A}\right)={P}\left({X}\right) \\ $$$${P}\left(\mathrm{1}\right)=\mathrm{1}−\left({a}+{d}\right)+\mathrm{1}=\mathrm{0}\Rightarrow{a}+{d}=\mathrm{2} \\ $$$${A}^{\mathrm{2}} =\begin{pmatrix}{{a}^{\mathrm{2}} +{bc}\:\:\:\:\:\:{ba}+{bd}}\\{{ac}+{cd}\:\:\:\:\:\:{bc}+{d}^{\mathrm{2}} }\end{pmatrix} \\ $$$${ac}+{cd}={c}\left({a}+{d}\right)=\mathrm{0}\Rightarrow{c}=\mathrm{0} \\ $$$${ba}+{bd}={b}\left({a}+{d}\right)=\mathrm{2}{b}=\mathrm{3}\Rightarrow{b}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${bc}+{d}^{\mathrm{2}} =\mathrm{1}\Rightarrow{d}=\underset{−} {+}\mathrm{1} \\ $$$${a}=\underset{−} {+}\mathrm{1},{a}+{d}=\mathrm{2}\Rightarrow{a}={d}=\mathrm{1} \\ $$$${A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com