Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 118954 by bramlexs22 last updated on 21/Oct/20

solve (6x^2  + 3y^2 ) dx = 2xy dy

$${solve}\:\left(\mathrm{6}{x}^{\mathrm{2}} \:+\:\mathrm{3}{y}^{\mathrm{2}} \right)\:{dx}\:=\:\mathrm{2}{xy}\:{dy} \\ $$

Answered by john santu last updated on 21/Oct/20

 set y = gx ⇒(dy/dx) = g + x (dg/dx)  the differential equation can be we  writte as (dy/dx) = ((6x^2 +3y^2 )/(2xy))  ⇒g + x(dg/dx) = ((6x^2 +3g^2 x^2 )/(2gx^2 )) = ((6+3g^2 )/(2g))  ⇒x (dg/dx) = ((6+g^2 )/(2g)) ; ((2g dg)/(6+g^2 )) = (dx/x)  ⇒ ∫ ((2g)/(6+g^2 )) − ∫ (dx/x) = c   ⇒ln (((6+g^2 )/x)) = c ⇒ ((6+((y^2 /x^2 )))/x) = C  ⇒((6x^2 +y^2 )/x^3 ) = C

$$\:{set}\:{y}\:=\:{gx}\:\Rightarrow\frac{{dy}}{{dx}}\:=\:{g}\:+\:{x}\:\frac{{dg}}{{dx}} \\ $$$${the}\:{differential}\:{equation}\:{can}\:{be}\:{we} \\ $$$${writte}\:{as}\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{6}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }{\mathrm{2}{xy}} \\ $$$$\Rightarrow{g}\:+\:{x}\frac{{dg}}{{dx}}\:=\:\frac{\mathrm{6}{x}^{\mathrm{2}} +\mathrm{3}{g}^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{2}{gx}^{\mathrm{2}} }\:=\:\frac{\mathrm{6}+\mathrm{3}{g}^{\mathrm{2}} }{\mathrm{2}{g}} \\ $$$$\Rightarrow{x}\:\frac{{dg}}{{dx}}\:=\:\frac{\mathrm{6}+{g}^{\mathrm{2}} }{\mathrm{2}{g}}\:;\:\frac{\mathrm{2}{g}\:{dg}}{\mathrm{6}+{g}^{\mathrm{2}} }\:=\:\frac{{dx}}{{x}} \\ $$$$\Rightarrow\:\int\:\frac{\mathrm{2}{g}}{\mathrm{6}+{g}^{\mathrm{2}} }\:−\:\int\:\frac{{dx}}{{x}}\:=\:{c}\: \\ $$$$\Rightarrow\mathrm{ln}\:\left(\frac{\mathrm{6}+{g}^{\mathrm{2}} }{{x}}\right)\:=\:{c}\:\Rightarrow\:\frac{\mathrm{6}+\left(\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)}{{x}}\:=\:{C} \\ $$$$\Rightarrow\frac{\mathrm{6}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{x}^{\mathrm{3}} }\:=\:{C}\: \\ $$

Answered by 1549442205PVT last updated on 21/Oct/20

Put y=tx⇒dy=xdt+tdx  (6x^2 +3y^2 )dx=2xydy  ⇔(6x^2 +3x^2 t^2 )dx=2x^2 t(xdt+tdx)  ⇔(6+3t^2 )dx=2t(xdt+tdx)  ⇔(t^2 +6)dx=2xtdt⇒(dx/x)=((2tdt)/(t^2 +6))  ⇔ln∣x∣+lnC=ln(t^2 +6)  ⇔lnC∣x∣=ln(t^2 +6)⇔C∣x∣=t^2 +6  ⇔C∣x∣=(y^2 /x^2 )+6⇔y^2 =Cx^2 ∣x∣ −6x^2   (C>0−constant)

$$\mathrm{Put}\:\mathrm{y}=\mathrm{tx}\Rightarrow\mathrm{dy}=\mathrm{xdt}+\mathrm{tdx} \\ $$$$\left(\mathrm{6x}^{\mathrm{2}} +\mathrm{3y}^{\mathrm{2}} \right)\mathrm{dx}=\mathrm{2xydy} \\ $$$$\Leftrightarrow\left(\mathrm{6x}^{\mathrm{2}} +\mathrm{3x}^{\mathrm{2}} \mathrm{t}^{\mathrm{2}} \right)\mathrm{dx}=\mathrm{2x}^{\mathrm{2}} \mathrm{t}\left(\mathrm{xdt}+\mathrm{tdx}\right) \\ $$$$\Leftrightarrow\left(\mathrm{6}+\mathrm{3t}^{\mathrm{2}} \right)\mathrm{dx}=\mathrm{2t}\left(\mathrm{xdt}+\mathrm{tdx}\right) \\ $$$$\Leftrightarrow\left(\mathrm{t}^{\mathrm{2}} +\mathrm{6}\right)\mathrm{dx}=\mathrm{2xtdt}\Rightarrow\frac{\mathrm{dx}}{\mathrm{x}}=\frac{\mathrm{2tdt}}{\mathrm{t}^{\mathrm{2}} +\mathrm{6}} \\ $$$$\Leftrightarrow\mathrm{ln}\mid\mathrm{x}\mid+\mathrm{lnC}=\mathrm{ln}\left(\mathrm{t}^{\mathrm{2}} +\mathrm{6}\right) \\ $$$$\Leftrightarrow\mathrm{lnC}\mid\mathrm{x}\mid=\mathrm{ln}\left(\mathrm{t}^{\mathrm{2}} +\mathrm{6}\right)\Leftrightarrow\mathrm{C}\mid\mathrm{x}\mid=\mathrm{t}^{\mathrm{2}} +\mathrm{6} \\ $$$$\Leftrightarrow\mathrm{C}\mid\mathrm{x}\mid=\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }+\mathrm{6}\Leftrightarrow\mathrm{y}^{\mathrm{2}} =\mathrm{Cx}^{\mathrm{2}} \mid\mathrm{x}\mid\:−\mathrm{6x}^{\mathrm{2}} \\ $$$$\left(\mathrm{C}>\mathrm{0}−\mathrm{constant}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com