Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 118930 by Ar Brandon last updated on 20/Oct/20

Let [x] denote the greatest integer ≤x. Then the  number of ordered pair (x,y), where x and y are  positive integers less than 30 such that              [(x/2)]+[((2x)/3)]+[(y/4)]+[((4y)/5)]=((7x)/6)+((21y)/(20))  is  (A) 1              (B) 2              (C) 3              (D) 4

$$\mathrm{Let}\:\left[{x}\right]\:\mathrm{denote}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\leqslant{x}.\:\mathrm{Then}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{ordered}\:\mathrm{pair}\:\left({x},\mathrm{y}\right),\:\mathrm{where}\:{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are} \\ $$$$\mathrm{positive}\:\mathrm{integers}\:\mathrm{less}\:\mathrm{than}\:\mathrm{30}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left[\frac{{x}}{\mathrm{2}}\right]+\left[\frac{\mathrm{2}{x}}{\mathrm{3}}\right]+\left[\frac{\mathrm{y}}{\mathrm{4}}\right]+\left[\frac{\mathrm{4y}}{\mathrm{5}}\right]=\frac{\mathrm{7}{x}}{\mathrm{6}}+\frac{\mathrm{21y}}{\mathrm{20}} \\ $$$$\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{4} \\ $$

Answered by floor(10²Eta[1]) last updated on 20/Oct/20

((7x)/6)+((21y)/(20))∈N  ⇒((70x+63y)/(60))∈N  ⇒70x+63y≡10x+3y≡0(mod60)  60∣10x+3y  ⇒390>10x+3y≥60  10x+3y∈{60, 120, 180, 240, 300, 360}  10x+3y=60z, 1≤z≤6  the solution to this diophantine equation is:  (x, y)=(6z−3k, 10k), k∈Z  ⇒0<10k<30⇒k=1 or k=2  ⇒y=10  x∈{3, 9, 15, 21, 27}  y=20  x∈{6, 12, 18, 24}  after checking that solutions on the  original equation the only one that works  are when y=20⇒x∈{6, 12, 18, 24}  Ans: D

$$\frac{\mathrm{7x}}{\mathrm{6}}+\frac{\mathrm{21y}}{\mathrm{20}}\in\mathbb{N} \\ $$$$\Rightarrow\frac{\mathrm{70x}+\mathrm{63y}}{\mathrm{60}}\in\mathbb{N} \\ $$$$\Rightarrow\mathrm{70x}+\mathrm{63y}\equiv\mathrm{10x}+\mathrm{3y}\equiv\mathrm{0}\left(\mathrm{mod60}\right) \\ $$$$\mathrm{60}\mid\mathrm{10x}+\mathrm{3y} \\ $$$$\Rightarrow\mathrm{390}>\mathrm{10x}+\mathrm{3y}\geqslant\mathrm{60} \\ $$$$\mathrm{10x}+\mathrm{3y}\in\left\{\mathrm{60},\:\mathrm{120},\:\mathrm{180},\:\mathrm{240},\:\mathrm{300},\:\mathrm{360}\right\} \\ $$$$\mathrm{10x}+\mathrm{3y}=\mathrm{60z},\:\mathrm{1}\leqslant\mathrm{z}\leqslant\mathrm{6} \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{this}\:\mathrm{diophantine}\:\mathrm{equation}\:\mathrm{is}: \\ $$$$\left(\mathrm{x},\:\mathrm{y}\right)=\left(\mathrm{6z}−\mathrm{3k},\:\mathrm{10k}\right),\:\mathrm{k}\in\mathbb{Z} \\ $$$$\Rightarrow\mathrm{0}<\mathrm{10k}<\mathrm{30}\Rightarrow\mathrm{k}=\mathrm{1}\:\mathrm{or}\:\mathrm{k}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{y}=\mathrm{10} \\ $$$$\mathrm{x}\in\left\{\mathrm{3},\:\mathrm{9},\:\mathrm{15},\:\mathrm{21},\:\mathrm{27}\right\} \\ $$$$\mathrm{y}=\mathrm{20} \\ $$$$\mathrm{x}\in\left\{\mathrm{6},\:\mathrm{12},\:\mathrm{18},\:\mathrm{24}\right\} \\ $$$$\mathrm{after}\:\mathrm{checking}\:\mathrm{that}\:\mathrm{solutions}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{original}\:\mathrm{equation}\:\mathrm{the}\:\mathrm{only}\:\mathrm{one}\:\mathrm{that}\:\mathrm{works} \\ $$$$\mathrm{are}\:\mathrm{when}\:\mathrm{y}=\mathrm{20}\Rightarrow\mathrm{x}\in\left\{\mathrm{6},\:\mathrm{12},\:\mathrm{18},\:\mathrm{24}\right\} \\ $$$$\mathrm{Ans}:\:\mathrm{D} \\ $$

Commented by Ar Brandon last updated on 21/Oct/20

Thank you Sir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com