Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 118781 by Algoritm last updated on 19/Oct/20

Commented by MJS_new last updated on 19/Oct/20

minimum of f(x)=x^x^x^x    is ≈.59  but (1/3^(√(48)) )≈.00049  ⇒ no solution

$$\mathrm{minimum}\:\mathrm{of}\:{f}\left({x}\right)={x}^{{x}^{{x}^{{x}} } } \:\mathrm{is}\:\approx.\mathrm{59} \\ $$$$\mathrm{but}\:\frac{\mathrm{1}}{\mathrm{3}^{\sqrt{\mathrm{48}}} }\approx.\mathrm{00049} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$

Commented by Algoritm last updated on 20/Oct/20

Commented by MJS_new last updated on 20/Oct/20

this is no result. simply (1/3^(√(48)) )=3^(−(√(48))) =3^(−4(√3))

$$\mathrm{this}\:\mathrm{is}\:\mathrm{no}\:\mathrm{result}.\:\mathrm{simply}\:\frac{\mathrm{1}}{\mathrm{3}^{\sqrt{\mathrm{48}}} }=\mathrm{3}^{−\sqrt{\mathrm{48}}} =\mathrm{3}^{−\mathrm{4}\sqrt{\mathrm{3}}} \\ $$

Commented by Algoritm last updated on 20/Oct/20

Commented by MJS_new last updated on 20/Oct/20

and now where′s the solution x=?

$$\mathrm{and}\:\mathrm{now}\:\mathrm{where}'\mathrm{s}\:\mathrm{the}\:\mathrm{solution}\:{x}=? \\ $$

Commented by MJS_new last updated on 20/Oct/20

your picture shows that the graphs don′t  intersect.

$$\mathrm{your}\:\mathrm{picture}\:\mathrm{shows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{graphs}\:\mathrm{don}'\mathrm{t} \\ $$$$\mathrm{intersect}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com