Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 118612 by rexfordattacudjoe last updated on 18/Oct/20

Answered by 1549442205PVT last updated on 18/Oct/20

y=0.4x^2 −36x+1000=  (4/(10))(x^2 −90x+2500)=(2/5)[(x−45)^2 +475]  ≥((2.475)/5)=190  ⇒y_(min) =190 when x=45 (years−old)  It means that numbers of car accidents   are lowest at age 45 .That number is  190 cases per 50 million km driven

$$\mathrm{y}=\mathrm{0}.\mathrm{4x}^{\mathrm{2}} −\mathrm{36x}+\mathrm{1000}= \\ $$$$\frac{\mathrm{4}}{\mathrm{10}}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{90x}+\mathrm{2500}\right)=\frac{\mathrm{2}}{\mathrm{5}}\left[\left(\mathrm{x}−\mathrm{45}\right)^{\mathrm{2}} +\mathrm{475}\right] \\ $$$$\geqslant\frac{\mathrm{2}.\mathrm{475}}{\mathrm{5}}=\mathrm{190} \\ $$$$\Rightarrow\mathrm{y}_{\mathrm{min}} =\mathrm{190}\:\mathrm{when}\:\mathrm{x}=\mathrm{45}\:\left(\mathrm{years}−\mathrm{old}\right) \\ $$$$\mathrm{It}\:\mathrm{means}\:\mathrm{that}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{car}\:\mathrm{accidents}\: \\ $$$$\mathrm{are}\:\mathrm{lowest}\:\mathrm{at}\:\mathrm{age}\:\mathrm{45}\:.\mathrm{That}\:\mathrm{number}\:\mathrm{is} \\ $$$$\mathrm{190}\:\mathrm{cases}\:\mathrm{per}\:\mathrm{50}\:\mathrm{million}\:\mathrm{km}\:\mathrm{driven} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com