Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 118084 by bemath last updated on 15/Oct/20

suppose f: [1,3 ]→ [−1,1 ] such  that ∫_1 ^3 f(x) dx = 0 . What the maximum  value of ∫_1 ^3  x^(−1) .f(x) dx ?

$$\mathrm{suppose}\:\mathrm{f}:\:\left[\mathrm{1},\mathrm{3}\:\right]\rightarrow\:\left[−\mathrm{1},\mathrm{1}\:\right]\:\mathrm{such} \\ $$$$\mathrm{that}\:\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{0}\:.\:\mathrm{What}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\:\mathrm{x}^{−\mathrm{1}} .\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$

Commented by john santu last updated on 16/Oct/20

max = 2ln 2−ln 3

$${max}\:=\:\mathrm{2ln}\:\mathrm{2}−\mathrm{ln}\:\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com