Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 117594 by mathdave last updated on 12/Oct/20

A rope 5m long is fastened to two hooks   4.0m apart on a horizontal  ceiling.to the rope is attached a 10kg   mass so that the segments of the rope  are 3.0m and 2.0m.compute the  tensionin each segment

$${A}\:{rope}\:\mathrm{5}{m}\:{long}\:{is}\:{fastened}\:{to}\:{two}\:{hooks}\: \\ $$$$\mathrm{4}.\mathrm{0}{m}\:{apart}\:{on}\:{a}\:{horizontal} \\ $$$${ceiling}.{to}\:{the}\:{rope}\:{is}\:{attached}\:{a}\:\mathrm{10}{kg}\: \\ $$$${mass}\:{so}\:{that}\:{the}\:{segments}\:{of}\:{the}\:{rope} \\ $$$${are}\:\mathrm{3}.\mathrm{0}{m}\:{and}\:\mathrm{2}.\mathrm{0}{m}.{compute}\:{the} \\ $$$${tensionin}\:{each}\:{segment} \\ $$

Answered by mr W last updated on 12/Oct/20

Commented by mr W last updated on 12/Oct/20

cos α=((3^2 +4^2 −2^2 )/(2×3×4))=(7/8)  cos β=((2^2 +4^2 −3^2 )/(2×2×4))=((11)/(16))  (T_1 /(sin ((π/2)−β)))=(T_2 /(sin ((π/2)−α)))=((mg)/(sin (α+β)))  ⇒T_1 =((mg cos β)/(sin (α+β)))=((10×10×((11)/(16)))/(((√(15))/8)×((11)/(16))+(7/8)×((√(135))/(16))))  =((55(√(15)))/3)=71.00 N  ⇒T_2 =((mg cos α)/(sin (α+β)))=((10×10×(7/8))/(((√(15))/8)×((11)/(16))+(7/8)×((√(135))/(16))))  =((70(√(15)))/3)=90.37 N

$$\mathrm{cos}\:\alpha=\frac{\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }{\mathrm{2}×\mathrm{3}×\mathrm{4}}=\frac{\mathrm{7}}{\mathrm{8}} \\ $$$$\mathrm{cos}\:\beta=\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}×\mathrm{4}}=\frac{\mathrm{11}}{\mathrm{16}} \\ $$$$\frac{{T}_{\mathrm{1}} }{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\beta\right)}=\frac{{T}_{\mathrm{2}} }{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right)}=\frac{{mg}}{\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\frac{{mg}\:\mathrm{cos}\:\beta}{\mathrm{sin}\:\left(\alpha+\beta\right)}=\frac{\mathrm{10}×\mathrm{10}×\frac{\mathrm{11}}{\mathrm{16}}}{\frac{\sqrt{\mathrm{15}}}{\mathrm{8}}×\frac{\mathrm{11}}{\mathrm{16}}+\frac{\mathrm{7}}{\mathrm{8}}×\frac{\sqrt{\mathrm{135}}}{\mathrm{16}}} \\ $$$$=\frac{\mathrm{55}\sqrt{\mathrm{15}}}{\mathrm{3}}=\mathrm{71}.\mathrm{00}\:{N} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{{mg}\:\mathrm{cos}\:\alpha}{\mathrm{sin}\:\left(\alpha+\beta\right)}=\frac{\mathrm{10}×\mathrm{10}×\frac{\mathrm{7}}{\mathrm{8}}}{\frac{\sqrt{\mathrm{15}}}{\mathrm{8}}×\frac{\mathrm{11}}{\mathrm{16}}+\frac{\mathrm{7}}{\mathrm{8}}×\frac{\sqrt{\mathrm{135}}}{\mathrm{16}}} \\ $$$$=\frac{\mathrm{70}\sqrt{\mathrm{15}}}{\mathrm{3}}=\mathrm{90}.\mathrm{37}\:{N} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com