Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 117026 by bemath last updated on 08/Oct/20

 ((√(1−x))/( (√x))) + ((√x)/( (√(1−x)))) = ((13)/6)

$$\:\frac{\sqrt{\mathrm{1}−\mathrm{x}}}{\:\sqrt{\mathrm{x}}}\:+\:\frac{\sqrt{\mathrm{x}}}{\:\sqrt{\mathrm{1}−\mathrm{x}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}} \\ $$

Answered by 1549442205PVT last updated on 09/Oct/20

We need the condition for the equation  is defined as 0<x<1(∗)   ((√(1−x))/( (√x))) + ((√x)/( (√(1−x)))) = ((13)/6) (1)  (1)⇔((1−x+x)/( (√(x(1−x)))))=((13)/6)  ⇔6=13(√(x(1−x)))⇔36=169(x−x^2 )  ⇔169x^2 −169x+36=0  Δ=169^2 −4.169.36=169.25=65^2   ⇒x=((169±65)/(2.169))=((13±5)/(2.13))∈{(4/(13)),(9/(13))}  both satisfy (∗)  Thus,the given equation has two roots  x∈{(4/(13)),(9/(13))}

$$\mathrm{We}\:\mathrm{need}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{for}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{0}<\mathrm{x}<\mathrm{1}\left(\ast\right) \\ $$$$\:\frac{\sqrt{\mathrm{1}−\mathrm{x}}}{\:\sqrt{\mathrm{x}}}\:+\:\frac{\sqrt{\mathrm{x}}}{\:\sqrt{\mathrm{1}−\mathrm{x}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}}\:\left(\mathrm{1}\right) \\ $$$$\left(\mathrm{1}\right)\Leftrightarrow\frac{\mathrm{1}−\mathrm{x}+\mathrm{x}}{\:\sqrt{\mathrm{x}\left(\mathrm{1}−\mathrm{x}\right)}}=\frac{\mathrm{13}}{\mathrm{6}} \\ $$$$\Leftrightarrow\mathrm{6}=\mathrm{13}\sqrt{\mathrm{x}\left(\mathrm{1}−\mathrm{x}\right)}\Leftrightarrow\mathrm{36}=\mathrm{169}\left(\mathrm{x}−\mathrm{x}^{\mathrm{2}} \right) \\ $$$$\Leftrightarrow\mathrm{169x}^{\mathrm{2}} −\mathrm{169x}+\mathrm{36}=\mathrm{0} \\ $$$$\Delta=\mathrm{169}^{\mathrm{2}} −\mathrm{4}.\mathrm{169}.\mathrm{36}=\mathrm{169}.\mathrm{25}=\mathrm{65}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{169}\pm\mathrm{65}}{\mathrm{2}.\mathrm{169}}=\frac{\mathrm{13}\pm\mathrm{5}}{\mathrm{2}.\mathrm{13}}\in\left\{\frac{\mathrm{4}}{\mathrm{13}},\frac{\mathrm{9}}{\mathrm{13}}\right\} \\ $$$$\mathrm{both}\:\mathrm{satisfy}\:\left(\ast\right) \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{two}\:\mathrm{roots} \\ $$$$\mathrm{x}\in\left\{\frac{\mathrm{4}}{\mathrm{13}},\frac{\mathrm{9}}{\mathrm{13}}\right\} \\ $$

Commented by bemath last updated on 09/Oct/20

gave kudos

$$\mathrm{gave}\:\mathrm{kudos} \\ $$

Answered by TANMAY PANACEA last updated on 09/Oct/20

a+(1/a)=((13)/6)→6a^2 −13a+6=0  6a^2 −9a−4a+6=0  3a(2a−3)−2(2a−3)=0  (2a−3)(3a−2)=0  a=(3/2),(2/3)  a^2 =((1−x)/x)=(9/4)    and  ((1−x)/x)=(4/9)  9x+4x=4→x=(4/(13)) and 13x=9    x=(9/(13))

$${a}+\frac{\mathrm{1}}{{a}}=\frac{\mathrm{13}}{\mathrm{6}}\rightarrow\mathrm{6}{a}^{\mathrm{2}} −\mathrm{13}{a}+\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{6}{a}^{\mathrm{2}} −\mathrm{9}{a}−\mathrm{4}{a}+\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{3}{a}\left(\mathrm{2}{a}−\mathrm{3}\right)−\mathrm{2}\left(\mathrm{2}{a}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\left(\mathrm{2}{a}−\mathrm{3}\right)\left(\mathrm{3}{a}−\mathrm{2}\right)=\mathrm{0} \\ $$$${a}=\frac{\mathrm{3}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${a}^{\mathrm{2}} =\frac{\mathrm{1}−{x}}{{x}}=\frac{\mathrm{9}}{\mathrm{4}}\:\:\:\:{and}\:\:\frac{\mathrm{1}−{x}}{{x}}=\frac{\mathrm{4}}{\mathrm{9}} \\ $$$$\mathrm{9}{x}+\mathrm{4}{x}=\mathrm{4}\rightarrow\boldsymbol{{x}}=\frac{\mathrm{4}}{\mathrm{13}}\:\boldsymbol{{and}}\:\mathrm{13}\boldsymbol{{x}}=\mathrm{9}\:\:\:\:\boldsymbol{{x}}=\frac{\mathrm{9}}{\mathrm{13}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com