Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 116872 by bemath last updated on 07/Oct/20

Answered by bobhans last updated on 07/Oct/20

lim_(x→∞)  (((1/x) cos^2 ((5/x)))/(3 tan 2x))  letting (1/x) = z with z→0  lim_(z→0)  ((z cos^2 (5z))/(3 tan ((1/z)))) = lim_(z→0)  (1/3) z cot  ((1/z)) cos^2 (5z)  lim_(z→0)  (1/3) z cot ((1/z)) = 0

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\mathrm{5}}{\mathrm{x}}\right)}{\mathrm{3}\:\mathrm{tan}\:\mathrm{2x}} \\ $$$$\mathrm{letting}\:\frac{\mathrm{1}}{\mathrm{x}}\:=\:\mathrm{z}\:\mathrm{with}\:\mathrm{z}\rightarrow\mathrm{0} \\ $$$$\underset{\mathrm{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{z}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{5z}\right)}{\mathrm{3}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{z}}\right)}\:=\:\underset{\mathrm{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{z}\:\mathrm{cot}\:\:\left(\frac{\mathrm{1}}{\mathrm{z}}\right)\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{5z}\right) \\ $$$$\underset{\mathrm{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{z}\:\mathrm{cot}\:\left(\frac{\mathrm{1}}{\mathrm{z}}\right)\:=\:\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com