Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 116746 by bemath last updated on 06/Oct/20

Find an orthogonal matrix A whose  first row is u_1 = ((1/3), (2/3), (2/3)).

$$\mathrm{Find}\:\mathrm{an}\:\mathrm{orthogonal}\:\mathrm{matrix}\:\mathrm{A}\:\mathrm{whose} \\ $$$$\mathrm{first}\:\mathrm{row}\:\mathrm{is}\:\mathrm{u}_{\mathrm{1}} =\:\left(\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{2}}{\mathrm{3}},\:\frac{\mathrm{2}}{\mathrm{3}}\right). \\ $$

Answered by john santu last updated on 06/Oct/20

First step find a nonzero vector   w_1 =(x,y,z) that is orthogonal to u_1 .  for which ⟨u_1 ,w_1 ⟩ = 0=(x/3)+((2y)/3)+((2z)/3)  or x+2y+2z = 0 . One such solution  is w_1 =(0,1,−1). Normalize w_1  to   obtain the second row of A, u_2 =(0,(1/( (√2))),−(1/( (√2))))  Next step find a nonzero vector w_2 =(x,y,z)  that is orthogonal to both u_1  and u_2   for which ⟨u_1 ,w_2 ⟩ = 0 and ⟨u_2 ,w_2 ⟩ =0  ⇒⟨u_1 ,w_2 ⟩ = (x/3)+((2y)/3)+((2z)/3) = 0   ⇒⟨u_2 ,w_2 ⟩ = (y/( (√2))) −(z/( (√2))) = 0  set z=−1 and find the solution   w_2  = (4,−1,−1) . Normalize w_2   and obtain the third row of A , that is  u_3  = ((4/( (√(18)))), −(1/( (√(18)))), −(1/( (√(18)))))   Thus A =  ((((1/3)          (2/3)            (2/3))),(( 0           (1/( (√2)))        −(1/( (√2))) )),(( (4/( (√(18))))  −(1/( (√(18))))  −(1/( (√(18)))))) )   We emphasize that the above matrix A  is not unique.

$${First}\:{step}\:{find}\:{a}\:{nonzero}\:{vector}\: \\ $$$${w}_{\mathrm{1}} =\left({x},{y},{z}\right)\:{that}\:{is}\:{orthogonal}\:{to}\:{u}_{\mathrm{1}} . \\ $$$${for}\:{which}\:\langle{u}_{\mathrm{1}} ,{w}_{\mathrm{1}} \rangle\:=\:\mathrm{0}=\frac{{x}}{\mathrm{3}}+\frac{\mathrm{2}{y}}{\mathrm{3}}+\frac{\mathrm{2}{z}}{\mathrm{3}} \\ $$$${or}\:{x}+\mathrm{2}{y}+\mathrm{2}{z}\:=\:\mathrm{0}\:.\:{One}\:{such}\:{solution} \\ $$$${is}\:{w}_{\mathrm{1}} =\left(\mathrm{0},\mathrm{1},−\mathrm{1}\right).\:{Normalize}\:{w}_{\mathrm{1}} \:{to}\: \\ $$$${obtain}\:{the}\:{second}\:{row}\:{of}\:{A},\:{u}_{\mathrm{2}} =\left(\mathrm{0},\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$${Next}\:{step}\:{find}\:{a}\:{nonzero}\:{vector}\:{w}_{\mathrm{2}} =\left({x},{y},{z}\right) \\ $$$${that}\:{is}\:{orthogonal}\:{to}\:{both}\:{u}_{\mathrm{1}} \:{and}\:{u}_{\mathrm{2}} \\ $$$${for}\:{which}\:\langle{u}_{\mathrm{1}} ,{w}_{\mathrm{2}} \rangle\:=\:\mathrm{0}\:{and}\:\langle{u}_{\mathrm{2}} ,{w}_{\mathrm{2}} \rangle\:=\mathrm{0} \\ $$$$\Rightarrow\langle{u}_{\mathrm{1}} ,{w}_{\mathrm{2}} \rangle\:=\:\frac{{x}}{\mathrm{3}}+\frac{\mathrm{2}{y}}{\mathrm{3}}+\frac{\mathrm{2}{z}}{\mathrm{3}}\:=\:\mathrm{0}\: \\ $$$$\Rightarrow\langle{u}_{\mathrm{2}} ,{w}_{\mathrm{2}} \rangle\:=\:\frac{{y}}{\:\sqrt{\mathrm{2}}}\:−\frac{{z}}{\:\sqrt{\mathrm{2}}}\:=\:\mathrm{0} \\ $$$${set}\:{z}=−\mathrm{1}\:{and}\:{find}\:{the}\:{solution}\: \\ $$$${w}_{\mathrm{2}} \:=\:\left(\mathrm{4},−\mathrm{1},−\mathrm{1}\right)\:.\:{Normalize}\:{w}_{\mathrm{2}} \\ $$$${and}\:{obtain}\:{the}\:{third}\:{row}\:{of}\:{A}\:,\:{that}\:{is} \\ $$$${u}_{\mathrm{3}} \:=\:\left(\frac{\mathrm{4}}{\:\sqrt{\mathrm{18}}},\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{18}}},\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{18}}}\right)\: \\ $$$${Thus}\:{A}\:=\:\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{3}}}\\{\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:}\\{\:\frac{\mathrm{4}}{\:\sqrt{\mathrm{18}}}\:\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{18}}}\:\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{18}}}}\end{pmatrix}\: \\ $$$${We}\:{emphasize}\:{that}\:{the}\:{above}\:{matrix}\:{A} \\ $$$${is}\:{not}\:{unique}. \\ $$

Commented by bemath last updated on 06/Oct/20

waw... thanks a lot mr farmer math

$$\mathrm{waw}...\:\mathrm{thanks}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{mr}\:\mathrm{farmer}\:\mathrm{math} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com