Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 116323 by bobhans last updated on 03/Oct/20

(1)Let a,b and c real number such that   ((ab)/(a+b)) = (1/3), ((bc)/(b+c)) = (1/4) and ((ac)/(a+c)) = (1/5). Find  the value of ((24abc)/(ab+ac+bc)) ?  (2) Let p and q be two real number that  satisfy p.q=2013. What is the minimum  value of (p+q)^2  ?

$$\left(\mathrm{1}\right)\mathrm{Let}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}}\:=\:\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{bc}}{\mathrm{b}+\mathrm{c}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{and}\:\frac{\mathrm{ac}}{\mathrm{a}+\mathrm{c}}\:=\:\frac{\mathrm{1}}{\mathrm{5}}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{24abc}}{\mathrm{ab}+\mathrm{ac}+\mathrm{bc}}\:? \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Let}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{be}\:\mathrm{two}\:\mathrm{real}\:\mathrm{number}\:\mathrm{that} \\ $$$$\mathrm{satisfy}\:\mathrm{p}.\mathrm{q}=\mathrm{2013}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}} \:? \\ $$

Answered by john santu last updated on 03/Oct/20

(1) → { (((1/a)+(1/b)=3)),(((1/b)+(1/c)=4 )),(((1/a)+(1/c)=5)) :}       summing the three equation  ⇒2((1/a)+(1/b)+(1/c)) = 12   ⇒ (1/a)+(1/b)+(1/c) = 6 ; ((ab+ac+bc)/(abc)) = 6  ⇒ ((abc)/(ab+ac+bc)) = (1/6) , multiply both  sides by 24 we get ((24abc)/(ab+ac+bc)) = 4

$$\left(\mathrm{1}\right)\:\rightarrow\begin{cases}{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\mathrm{3}}\\{\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\mathrm{4}\:}\\{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{c}}=\mathrm{5}}\end{cases} \\ $$$$\:\:\:\:\:{summing}\:{the}\:{three}\:{equation} \\ $$$$\Rightarrow\mathrm{2}\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)\:=\:\mathrm{12}\: \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\:=\:\mathrm{6}\:;\:\frac{{ab}+{ac}+{bc}}{{abc}}\:=\:\mathrm{6} \\ $$$$\Rightarrow\:\frac{{abc}}{{ab}+{ac}+{bc}}\:=\:\frac{\mathrm{1}}{\mathrm{6}}\:,\:{multiply}\:{both} \\ $$$${sides}\:{by}\:\mathrm{24}\:{we}\:{get}\:\frac{\mathrm{24}{abc}}{{ab}+{ac}+{bc}}\:=\:\mathrm{4} \\ $$$$ \\ $$

Answered by john santu last updated on 03/Oct/20

(2)(p+q)^2 =(p−q)^2 +4pq ≥ 0 + 4×2013                 ≥ 8052 , when p=q=(√(2013))  Minimum value of (p+q)^2  equal to 8052

$$\left(\mathrm{2}\right)\left({p}+{q}\right)^{\mathrm{2}} =\left({p}−{q}\right)^{\mathrm{2}} +\mathrm{4}{pq}\:\geqslant\:\mathrm{0}\:+\:\mathrm{4}×\mathrm{2013} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\geqslant\:\mathrm{8052}\:,\:{when}\:{p}={q}=\sqrt{\mathrm{2013}} \\ $$$${Minimum}\:{value}\:{of}\:\left({p}+{q}\right)^{\mathrm{2}} \:{equal}\:{to}\:\mathrm{8052} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com