Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 116054 by Study last updated on 30/Sep/20

(x^2 +2xy+1)dx+(x^2 +y^2 −1)dy=0  y=?

$$\left({x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{1}\right){dx}+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}\right){dy}=\mathrm{0} \\ $$$${y}=? \\ $$

Commented by mohammad17 last updated on 30/Sep/20

M(x,y)=x^2 +2xy+1⇒M_y =2x→(1)  N(x,y)=x^2 +y^2 −1⇒N_x =2x→(2)  from(1)and(2)the equation is exact    ∵M(x,y)dx+N(x,y)dy=0    ∴∫(x^2 +2xy+1)dx+∫(x^2 +y^2 −1)dy=C    ∴(1/3)x^3 +(1/3)y^3 +2x^2 y+x−y=C    ≪m.o≫

$${M}\left({x},{y}\right)={x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{1}\Rightarrow{M}_{{y}} =\mathrm{2}{x}\rightarrow\left(\mathrm{1}\right) \\ $$$${N}\left({x},{y}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}\Rightarrow{N}_{{x}} =\mathrm{2}{x}\rightarrow\left(\mathrm{2}\right) \\ $$$${from}\left(\mathrm{1}\right){and}\left(\mathrm{2}\right){the}\:{equation}\:{is}\:{exact} \\ $$$$ \\ $$$$\because{M}\left({x},{y}\right){dx}+{N}\left({x},{y}\right){dy}=\mathrm{0} \\ $$$$ \\ $$$$\therefore\int\left({x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{1}\right){dx}+\int\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}\right){dy}={C} \\ $$$$ \\ $$$$\therefore\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{3}}{y}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} {y}+{x}−{y}={C} \\ $$$$ \\ $$$$\ll{m}.{o}\gg \\ $$

Answered by MWSuSon last updated on 30/Sep/20

M=x^2 +2xy+1  N=x^2 +y^2 −1  (∂M/∂y)=(∂N/∂x)  ∫Mdx+∫(N−f(y))dy=C  ∫(x^2 +2xy+1)dx+∫(y^2 −1)dy=C  (x^3 /3)+x^2 y+x+(y^3 /3)−y=C

$$\mathrm{M}=\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{1} \\ $$$$\mathrm{N}=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{1} \\ $$$$\frac{\partial\mathrm{M}}{\partial\mathrm{y}}=\frac{\partial\mathrm{N}}{\partial\mathrm{x}} \\ $$$$\int\mathrm{Mdx}+\int\left(\mathrm{N}−\mathrm{f}\left(\mathrm{y}\right)\right)\mathrm{dy}=\mathrm{C} \\ $$$$\int\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{1}\right)\mathrm{dx}+\int\left(\mathrm{y}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{dy}=\mathrm{C} \\ $$$$\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{x}^{\mathrm{2}} \mathrm{y}+\mathrm{x}+\frac{\mathrm{y}^{\mathrm{3}} }{\mathrm{3}}−\mathrm{y}=\mathrm{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com