Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 11599 by tawa last updated on 28/Mar/17

A number is selected at random from the integers 10 to 35 exclussive, such  that the chances take the subsets of P, Q and R respectively, where P is  even , Q is even or prime number, and R is odd prime numbers. What is  the probability   (a) That exacly one of the events of the subset is choosen ?  (b) Of choosen at most two of the subset of the event.

$$\mathrm{A}\:\mathrm{number}\:\mathrm{is}\:\mathrm{selected}\:\mathrm{at}\:\mathrm{random}\:\mathrm{from}\:\mathrm{the}\:\mathrm{integers}\:\mathrm{10}\:\mathrm{to}\:\mathrm{35}\:\mathrm{exclussive},\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{chances}\:\mathrm{take}\:\mathrm{the}\:\mathrm{subsets}\:\mathrm{of}\:\mathrm{P},\:\mathrm{Q}\:\mathrm{and}\:\mathrm{R}\:\mathrm{respectively},\:\mathrm{where}\:\mathrm{P}\:\mathrm{is} \\ $$$$\mathrm{even}\:,\:\mathrm{Q}\:\mathrm{is}\:\mathrm{even}\:\mathrm{or}\:\mathrm{prime}\:\mathrm{number},\:\mathrm{and}\:\mathrm{R}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{prime}\:\mathrm{numbers}.\:\mathrm{What}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{probability}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{That}\:\mathrm{exacly}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{events}\:\mathrm{of}\:\mathrm{the}\:\mathrm{subset}\:\mathrm{is}\:\mathrm{choosen}\:? \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Of}\:\mathrm{choosen}\:\mathrm{at}\:\mathrm{most}\:\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{subset}\:\mathrm{of}\:\mathrm{the}\:\mathrm{event}. \\ $$

Answered by mrW1 last updated on 29/Mar/17

10,11,...,35⇒36 pieces  P=(10,12,...,34)⇒13 pieces  Pr=(11,13,17,19,23,31)⇒6 pieces  Q=P or Pr⇒13+6=19 pieces  R=Pr⇒6 pieces  (a) (6/(36))=16.6%  (b) ((13)/(36))=36.1%

$$\mathrm{10},\mathrm{11},...,\mathrm{35}\Rightarrow\mathrm{36}\:{pieces} \\ $$$${P}=\left(\mathrm{10},\mathrm{12},...,\mathrm{34}\right)\Rightarrow\mathrm{13}\:{pieces} \\ $$$${Pr}=\left(\mathrm{11},\mathrm{13},\mathrm{17},\mathrm{19},\mathrm{23},\mathrm{31}\right)\Rightarrow\mathrm{6}\:{pieces} \\ $$$${Q}={P}\:{or}\:{Pr}\Rightarrow\mathrm{13}+\mathrm{6}=\mathrm{19}\:{pieces} \\ $$$${R}={Pr}\Rightarrow\mathrm{6}\:{pieces} \\ $$$$\left({a}\right)\:\frac{\mathrm{6}}{\mathrm{36}}=\mathrm{16}.\mathrm{6\%} \\ $$$$\left({b}\right)\:\frac{\mathrm{13}}{\mathrm{36}}=\mathrm{36}.\mathrm{1\%} \\ $$

Commented by tawa last updated on 29/Mar/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com