Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115896 by bemath last updated on 29/Sep/20

 ∫ ((sec^4 x dx)/( (√(tan^3 x)))) =?

$$\:\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:{dx}}{\:\sqrt{\mathrm{tan}\:^{\mathrm{3}} {x}}}\:=? \\ $$

Answered by TANMAY PANACEA last updated on 29/Sep/20

∫(((1+t^2 )dt)/t^(3/2) )    [t=tanx      (dt/dx)=sec^2 x]  ∫t^(−(3/2)) +t^(1/2)    dt  =(t^(−(1/2)) /((−1)/2))+(t^(3/2) /(3/2))+c  =−2(tanx)^((−1)/2) +(2/3)(tanx)^(3/2) +C

$$\int\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dt}}{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:\:\:\left[{t}={tanx}\:\:\:\:\:\:\frac{{dt}}{{dx}}={sec}^{\mathrm{2}} {x}\right] \\ $$$$\int{t}^{−\frac{\mathrm{3}}{\mathrm{2}}} +{t}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:{dt} \\ $$$$=\frac{{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} }{\frac{−\mathrm{1}}{\mathrm{2}}}+\frac{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{c} \\ $$$$=−\mathrm{2}\left({tanx}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} +\frac{\mathrm{2}}{\mathrm{3}}\left({tanx}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +{C} \\ $$$$ \\ $$

Commented by bemath last updated on 29/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by Ar Brandon last updated on 29/Sep/20

I=∫((sec^4 x)/( (√(tan^3 x))))dx=∫((sec^2 x)/( (√(tan^3 x))))d(tanx)     =∫((1+tan^2 x)/( (√(tan^3 x))))d(tanx)=∫{(1/( (√(tan^3 x))))+((tan^2 x)/( (√(tan^3 x))))}d(tanx)     =∫{(tanx)^(−(3/2)) +(tanx)_ ^(1/2) }d(tanx)     =−(2/( (√(tanx))))+((2(√(tan^3 x)))/3)+C

$$\mathcal{I}=\int\frac{\mathrm{sec}^{\mathrm{4}} {x}}{\:\sqrt{\mathrm{tan}^{\mathrm{3}} {x}}}\mathrm{d}{x}=\int\frac{\mathrm{sec}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{tan}^{\mathrm{3}} {x}}}\mathrm{d}\left(\mathrm{tan}{x}\right) \\ $$$$\:\:\:=\int\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{tan}^{\mathrm{3}} {x}}}\mathrm{d}\left(\mathrm{tan}{x}\right)=\int\left\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{tan}^{\mathrm{3}} {x}}}+\frac{\mathrm{tan}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{tan}^{\mathrm{3}} {x}}}\right\}\mathrm{d}\left(\mathrm{tan}{x}\right) \\ $$$$\:\:\:=\int\left\{\left(\mathrm{tan}{x}\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} +\left(\mathrm{tan}{x}\right)_{} ^{\frac{\mathrm{1}}{\mathrm{2}}} \right\}\mathrm{d}\left(\mathrm{tan}{x}\right) \\ $$$$\:\:\:=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{tan}{x}}}+\frac{\mathrm{2}\sqrt{\mathrm{tan}^{\mathrm{3}} {x}}}{\mathrm{3}}+\mathcal{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com