Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 115859 by bemath last updated on 29/Sep/20

Determine, in simplest form the  smallest of the three numbers x,  y and z which satisfy the system   { ((log _9 (x)+log _9 (y)+log _3 (z)=2)),((log _(16) (x)+log _4 (y)+log _(16) (z)=1)),((log _5 (x)+log _(25) (y)+log _(25) (z)=0)) :}

$${Determine},\:{in}\:{simplest}\:{form}\:{the} \\ $$$${smallest}\:{of}\:{the}\:{three}\:{numbers}\:{x}, \\ $$$${y}\:{and}\:{z}\:{which}\:{satisfy}\:{the}\:{system} \\ $$$$\begin{cases}{\mathrm{log}\:_{\mathrm{9}} \left({x}\right)+\mathrm{log}\:_{\mathrm{9}} \left({y}\right)+\mathrm{log}\:_{\mathrm{3}} \left({z}\right)=\mathrm{2}}\\{\mathrm{log}\:_{\mathrm{16}} \left({x}\right)+\mathrm{log}\:_{\mathrm{4}} \left({y}\right)+\mathrm{log}\:_{\mathrm{16}} \left({z}\right)=\mathrm{1}}\\{\mathrm{log}\:_{\mathrm{5}} \left({x}\right)+\mathrm{log}\:_{\mathrm{25}} \left({y}\right)+\mathrm{log}\:_{\mathrm{25}} \left({z}\right)=\mathrm{0}}\end{cases} \\ $$

Answered by bobhans last updated on 29/Sep/20

→ { ((log _9 (xyz^2 )=2→xyz^2 =81)),((log _(16) (xy^2 z)=1→xy^2 z=16)),((log _(25) (x^2 yz)=0→x^2 yz=1)) :}  ⇔ (xyz)^4  = 81×16×1=(6)^4   ⇒ xyz = 6  { ((z=((81)/6) = ((27)/2))),((y=((16)/6)=(8/3))),((x=(1/6))) :}

$$\rightarrow\begin{cases}{\mathrm{log}\:_{\mathrm{9}} \left({xyz}^{\mathrm{2}} \right)=\mathrm{2}\rightarrow{xyz}^{\mathrm{2}} =\mathrm{81}}\\{\mathrm{log}\:_{\mathrm{16}} \left({xy}^{\mathrm{2}} {z}\right)=\mathrm{1}\rightarrow{xy}^{\mathrm{2}} {z}=\mathrm{16}}\\{\mathrm{log}\:_{\mathrm{25}} \left({x}^{\mathrm{2}} {yz}\right)=\mathrm{0}\rightarrow{x}^{\mathrm{2}} {yz}=\mathrm{1}}\end{cases} \\ $$$$\Leftrightarrow\:\left({xyz}\right)^{\mathrm{4}} \:=\:\mathrm{81}×\mathrm{16}×\mathrm{1}=\left(\mathrm{6}\right)^{\mathrm{4}} \\ $$$$\Rightarrow\:{xyz}\:=\:\mathrm{6}\:\begin{cases}{{z}=\frac{\mathrm{81}}{\mathrm{6}}\:=\:\frac{\mathrm{27}}{\mathrm{2}}}\\{{y}=\frac{\mathrm{16}}{\mathrm{6}}=\frac{\mathrm{8}}{\mathrm{3}}}\\{{x}=\frac{\mathrm{1}}{\mathrm{6}}}\end{cases} \\ $$

Answered by floor(10²Eta[1]) last updated on 29/Sep/20

(I)((log_3 (x))/2)+((log_3 (y))/2)+log_3 (z)=2  log_3 (x)+log_3 (y)+2log_3 (z)=4  log_3 (xyz^2 )=4  xyz^2 =81  (II)log_4 (x)+2log_4 (y)+log_4 (z)=2  log_4 (xy^2 z)=2  xy^2 z=16  (III)2log_5 (x)+log_5 (y)+log_5 (z)=0  log_5 (x^2 yz)=0  x^2 yz=1   { ((xyz^2 =81)),((xy^2 z=16)),((x^2 yz=1)) :}  xyz=((81)/z)  ((81y)/z)=16⇒16z=81y⇒16x=y  ((81x)/z)=1⇒z=81x  x.16x.81x=((81)/(81x))⇒x^4 =(1/6^4 )⇒x=(1/6)  y=(8/3)  z=((27)/2)

$$\left(\mathrm{I}\right)\frac{\mathrm{log}_{\mathrm{3}} \left(\mathrm{x}\right)}{\mathrm{2}}+\frac{\mathrm{log}_{\mathrm{3}} \left(\mathrm{y}\right)}{\mathrm{2}}+\mathrm{log}_{\mathrm{3}} \left(\mathrm{z}\right)=\mathrm{2} \\ $$$$\mathrm{log}_{\mathrm{3}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{3}} \left(\mathrm{y}\right)+\mathrm{2log}_{\mathrm{3}} \left(\mathrm{z}\right)=\mathrm{4} \\ $$$$\mathrm{log}_{\mathrm{3}} \left(\mathrm{xyz}^{\mathrm{2}} \right)=\mathrm{4} \\ $$$$\mathrm{xyz}^{\mathrm{2}} =\mathrm{81} \\ $$$$\left(\mathrm{II}\right)\mathrm{log}_{\mathrm{4}} \left(\mathrm{x}\right)+\mathrm{2log}_{\mathrm{4}} \left(\mathrm{y}\right)+\mathrm{log}_{\mathrm{4}} \left(\mathrm{z}\right)=\mathrm{2} \\ $$$$\mathrm{log}_{\mathrm{4}} \left(\mathrm{xy}^{\mathrm{2}} \mathrm{z}\right)=\mathrm{2} \\ $$$$\mathrm{xy}^{\mathrm{2}} \mathrm{z}=\mathrm{16} \\ $$$$\left(\mathrm{III}\right)\mathrm{2log}_{\mathrm{5}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{5}} \left(\mathrm{y}\right)+\mathrm{log}_{\mathrm{5}} \left(\mathrm{z}\right)=\mathrm{0} \\ $$$$\mathrm{log}_{\mathrm{5}} \left(\mathrm{x}^{\mathrm{2}} \mathrm{yz}\right)=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} \mathrm{yz}=\mathrm{1} \\ $$$$\begin{cases}{\mathrm{xyz}^{\mathrm{2}} =\mathrm{81}}\\{\mathrm{xy}^{\mathrm{2}} \mathrm{z}=\mathrm{16}}\\{\mathrm{x}^{\mathrm{2}} \mathrm{yz}=\mathrm{1}}\end{cases} \\ $$$$\mathrm{xyz}=\frac{\mathrm{81}}{\mathrm{z}} \\ $$$$\frac{\mathrm{81y}}{\mathrm{z}}=\mathrm{16}\Rightarrow\mathrm{16z}=\mathrm{81y}\Rightarrow\mathrm{16x}=\mathrm{y} \\ $$$$\frac{\mathrm{81x}}{\mathrm{z}}=\mathrm{1}\Rightarrow\mathrm{z}=\mathrm{81x} \\ $$$$\mathrm{x}.\mathrm{16x}.\mathrm{81x}=\frac{\mathrm{81}}{\mathrm{81x}}\Rightarrow\mathrm{x}^{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{4}} }\Rightarrow\mathrm{x}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\mathrm{y}=\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\mathrm{z}=\frac{\mathrm{27}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com