Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 115846 by bemath last updated on 29/Sep/20

given vertex parabola at point  (1,−2) and focus at (−1,−2).  find the equation of parabola

$${given}\:{vertex}\:{parabola}\:{at}\:{point} \\ $$$$\left(\mathrm{1},−\mathrm{2}\right)\:{and}\:{focus}\:{at}\:\left(−\mathrm{1},−\mathrm{2}\right). \\ $$$${find}\:{the}\:{equation}\:{of}\:{parabola} \\ $$

Commented by bemath last updated on 29/Sep/20

thank you mr PVT and bob

$${thank}\:{you}\:{mr}\:{PVT}\:{and}\:{bob} \\ $$

Answered by 1549442205PVT last updated on 29/Sep/20

Since we known that in the coordinate  system xOy if parabol has the focus  F(p/2;0)then its equation is y^2 =2px  and its vertex is O(0,0).Therefore,  Put X=x−1,Y=y+2.Then in the  coordinate system XOY Parabol have  the focus is F(−2,0)with its vertex is (0,0).  Therefore,in the coordinate system   XOYparabol have the equation is  Y^2 =−8X⇒−8(x−1)=(y+2)^2    Thus,the equation of the parabol we  need find is −8(x−1)=(y+2)^2

$$\mathrm{Since}\:\mathrm{we}\:\mathrm{known}\:\mathrm{that}\:\mathrm{in}\:\mathrm{the}\:\mathrm{coordinate} \\ $$$$\mathrm{system}\:\mathrm{xOy}\:\mathrm{if}\:\mathrm{parabol}\:\mathrm{has}\:\mathrm{the}\:\mathrm{focus} \\ $$$$\mathrm{F}\left(\mathrm{p}/\mathrm{2};\mathrm{0}\right)\mathrm{then}\:\mathrm{its}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{y}^{\mathrm{2}} =\mathrm{2px} \\ $$$$\mathrm{and}\:\mathrm{its}\:\mathrm{vertex}\:\mathrm{is}\:\mathrm{O}\left(\mathrm{0},\mathrm{0}\right).\mathrm{Therefore}, \\ $$$$\mathrm{Put}\:\mathrm{X}=\mathrm{x}−\mathrm{1},\mathrm{Y}=\mathrm{y}+\mathrm{2}.\mathrm{Then}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{coordinate}\:\mathrm{system}\:\mathrm{XOY}\:\mathrm{Parabol}\:\mathrm{have} \\ $$$$\mathrm{the}\:\mathrm{focus}\:\mathrm{is}\:\mathrm{F}\left(−\mathrm{2},\mathrm{0}\right)\mathrm{with}\:\mathrm{its}\:\mathrm{vertex}\:\mathrm{is}\:\left(\mathrm{0},\mathrm{0}\right). \\ $$$$\mathrm{Therefore},\mathrm{in}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{system} \\ $$$$\:\mathrm{XOYparabol}\:\mathrm{have}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is} \\ $$$$\mathrm{Y}^{\mathrm{2}} =−\mathrm{8X}\Rightarrow−\mathrm{8}\left(\mathrm{x}−\mathrm{1}\right)=\left(\mathrm{y}+\mathrm{2}\right)^{\mathrm{2}} \: \\ $$$$\boldsymbol{\mathrm{Thus}},\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{parabol}}\:\boldsymbol{\mathrm{we}} \\ $$$$\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{is}}\:−\mathrm{8}\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)=\left(\boldsymbol{\mathrm{y}}+\mathrm{2}\right)^{\mathrm{2}} \:\: \\ $$

Answered by bobhans last updated on 29/Sep/20

The line connecting the vertex and the  focus is the axis and has equation y=−2  .The directrix is the line orthogonal  to the axis, with a distance from the   vertex equal to the distance between  vertex and focus.  (√((x+1)^2 +(y+2)^2 )) = ∣x−3∣   (x+1)^2 +(y+2)^2  = (x−3)^2   ⇔(y+2)^2  = (x−3)^2 −(x+1)^2   ⇔(y+2)^2  = (2x−2)(−4)  ⇔(y+2)^2  = −8(x−1)

$${The}\:{line}\:{connecting}\:{the}\:{vertex}\:{and}\:{the} \\ $$$${focus}\:{is}\:{the}\:{axis}\:{and}\:{has}\:{equation}\:{y}=−\mathrm{2} \\ $$$$.{The}\:{directrix}\:{is}\:{the}\:{line}\:{orthogonal} \\ $$$${to}\:{the}\:{axis},\:{with}\:{a}\:{distance}\:{from}\:{the}\: \\ $$$${vertex}\:{equal}\:{to}\:{the}\:{distance}\:{between} \\ $$$${vertex}\:{and}\:{focus}. \\ $$$$\sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} }\:=\:\mid{x}−\mathrm{3}\mid\: \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} \:=\:\left({x}−\mathrm{3}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\left({y}+\mathrm{2}\right)^{\mathrm{2}} \:=\:\left({x}−\mathrm{3}\right)^{\mathrm{2}} −\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\left({y}+\mathrm{2}\right)^{\mathrm{2}} \:=\:\left(\mathrm{2}{x}−\mathrm{2}\right)\left(−\mathrm{4}\right) \\ $$$$\Leftrightarrow\left({y}+\mathrm{2}\right)^{\mathrm{2}} \:=\:−\mathrm{8}\left({x}−\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com