Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115793 by ZiYangLee last updated on 28/Sep/20

Given that p_∽ = (((  2)),((−3)) ) , q_∽ = (((−4)),((   m)) ) and r_∽ = ((n),(4) )  If p_∽ +q_∽ −r_∽  is a unit vector, find the value  of m and n.

$$\mathrm{Given}\:\mathrm{that}\:\underset{\backsim} {{p}}=\begin{pmatrix}{\:\:\mathrm{2}}\\{−\mathrm{3}}\end{pmatrix}\:,\:\underset{\backsim} {{q}}=\begin{pmatrix}{−\mathrm{4}}\\{\:\:\:{m}}\end{pmatrix}\:\mathrm{and}\:\underset{\backsim} {{r}}=\begin{pmatrix}{{n}}\\{\mathrm{4}}\end{pmatrix} \\ $$$$\mathrm{If}\:\underset{\backsim} {{p}}+\underset{\backsim} {{q}}−\underset{\backsim} {{r}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{m}\:\mathrm{and}\:{n}. \\ $$

Answered by $@y@m last updated on 29/Sep/20

p=2i−3j  q=−4i+mj  r=ni+4j  p+q−r=(2−4−n)i+(−3+m−4)j                  =(−2−n)i+(m−7)j  ∵ p+q−r is a unit vector.  ∴∣p+q−r∣=1  ⇒(−2−n)^2 +(m−7)^2 =1 ...(A)  Infinite values are possible for m, n  satisfying (A)

$${p}=\mathrm{2}{i}−\mathrm{3}{j} \\ $$$${q}=−\mathrm{4}{i}+{mj} \\ $$$${r}={ni}+\mathrm{4}{j} \\ $$$${p}+{q}−{r}=\left(\mathrm{2}−\mathrm{4}−{n}\right){i}+\left(−\mathrm{3}+{m}−\mathrm{4}\right){j} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−\mathrm{2}−{n}\right){i}+\left({m}−\mathrm{7}\right){j} \\ $$$$\because\:{p}+{q}−{r}\:\mathrm{is}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector}. \\ $$$$\therefore\mid{p}+{q}−{r}\mid=\mathrm{1} \\ $$$$\Rightarrow\left(−\mathrm{2}−{n}\right)^{\mathrm{2}} +\left({m}−\mathrm{7}\right)^{\mathrm{2}} =\mathrm{1}\:...\left({A}\right) \\ $$$${Infinite}\:{values}\:{are}\:{possible}\:{for}\:{m},\:{n} \\ $$$${satisfying}\:\left({A}\right) \\ $$

Commented by ZiYangLee last updated on 29/Sep/20

Hmmm...

$$\mathrm{Hmmm}... \\ $$

Commented by ZiYangLee last updated on 05/Oct/20

you are right

$$\mathrm{you}\:\mathrm{are}\:\mathrm{right} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com