Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115645 by ZiYangLee last updated on 27/Sep/20

Commented by Dwaipayan Shikari last updated on 27/Sep/20

(((n+1)p+(n−1)q)/((n−1)p+(n+1)q))=C  ((2np+2nq)/((n+1)p−(n−1)p+(n−1)q−(n+1)q))=((C+1)/(C−1))  2n.((p+q)/(p−q))=((C+1)/(C−1))  2n(((p/q)+1)/((p/q)−1))=((((p/q))^k +1)/(((p/q))^k −1))  2n((a+1)/(a−1))=((a^k +1)/(a^k −1))  2n(a^(k+1) +a^k −a−1)=(a^(k+1) +a−a^k −1)  2n=((a^(k+1) +a−a^k −1)/(a^(k+1) +a^k −a−1))  n>1  ((a^(k+1) +a−a^k −1)/(a^(k+1) +a^k −a−1))>2  −a^(k+1) −2a^k +a+1>0  a^k (a+2)−1(a+1)<0  a^k <((a+1)/(a+2))  klog(a)<log(((a+1)/(a+2)))  k<log(((a+1)/(a+2))).(1/(log(a)))  k<log(((p+q)/(p+2q))).(1/(log((p/q))))

$$\frac{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{p}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{q}}{\left(\mathrm{n}−\mathrm{1}\right)\mathrm{p}+\left(\mathrm{n}+\mathrm{1}\right)\mathrm{q}}=\mathrm{C} \\ $$$$\frac{\mathrm{2np}+\mathrm{2nq}}{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{p}−\left(\mathrm{n}−\mathrm{1}\right)\mathrm{p}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{q}−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{q}}=\frac{\mathrm{C}+\mathrm{1}}{\mathrm{C}−\mathrm{1}} \\ $$$$\mathrm{2n}.\frac{\mathrm{p}+\mathrm{q}}{\mathrm{p}−\mathrm{q}}=\frac{\mathrm{C}+\mathrm{1}}{\mathrm{C}−\mathrm{1}} \\ $$$$\mathrm{2n}\frac{\frac{\mathrm{p}}{\mathrm{q}}+\mathrm{1}}{\frac{\mathrm{p}}{\mathrm{q}}−\mathrm{1}}=\frac{\left(\frac{\mathrm{p}}{\mathrm{q}}\right)^{\mathrm{k}} +\mathrm{1}}{\left(\frac{\mathrm{p}}{\mathrm{q}}\right)^{\mathrm{k}} −\mathrm{1}} \\ $$$$\mathrm{2n}\frac{\mathrm{a}+\mathrm{1}}{\mathrm{a}−\mathrm{1}}=\frac{\mathrm{a}^{\mathrm{k}} +\mathrm{1}}{\mathrm{a}^{\mathrm{k}} −\mathrm{1}} \\ $$$$\mathrm{2n}\left(\mathrm{a}^{\mathrm{k}+\mathrm{1}} +\mathrm{a}^{\mathrm{k}} −\mathrm{a}−\mathrm{1}\right)=\left(\mathrm{a}^{\mathrm{k}+\mathrm{1}} +\mathrm{a}−\mathrm{a}^{\mathrm{k}} −\mathrm{1}\right) \\ $$$$\mathrm{2n}=\frac{\mathrm{a}^{\mathrm{k}+\mathrm{1}} +\mathrm{a}−\mathrm{a}^{\mathrm{k}} −\mathrm{1}}{\mathrm{a}^{\mathrm{k}+\mathrm{1}} +\mathrm{a}^{\mathrm{k}} −\mathrm{a}−\mathrm{1}} \\ $$$$\mathrm{n}>\mathrm{1} \\ $$$$\frac{\mathrm{a}^{\mathrm{k}+\mathrm{1}} +\mathrm{a}−\mathrm{a}^{\mathrm{k}} −\mathrm{1}}{\mathrm{a}^{\mathrm{k}+\mathrm{1}} +\mathrm{a}^{\mathrm{k}} −\mathrm{a}−\mathrm{1}}>\mathrm{2} \\ $$$$−\mathrm{a}^{\mathrm{k}+\mathrm{1}} −\mathrm{2a}^{\mathrm{k}} +\mathrm{a}+\mathrm{1}>\mathrm{0} \\ $$$$\mathrm{a}^{\mathrm{k}} \left(\mathrm{a}+\mathrm{2}\right)−\mathrm{1}\left(\mathrm{a}+\mathrm{1}\right)<\mathrm{0} \\ $$$$\mathrm{a}^{\mathrm{k}} <\frac{\mathrm{a}+\mathrm{1}}{\mathrm{a}+\mathrm{2}} \\ $$$$\mathrm{klog}\left(\mathrm{a}\right)<\mathrm{log}\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{a}+\mathrm{2}}\right) \\ $$$$\mathrm{k}<\mathrm{log}\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{a}+\mathrm{2}}\right).\frac{\mathrm{1}}{\mathrm{log}\left(\mathrm{a}\right)} \\ $$$$\mathrm{k}<\mathrm{log}\left(\frac{\mathrm{p}+\mathrm{q}}{\mathrm{p}+\mathrm{2q}}\right).\frac{\mathrm{1}}{\mathrm{log}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)} \\ $$

Commented by PRITHWISH SEN 2 last updated on 01/Oct/20

(n+1)p−(n−1)p+(n−1)q−(n+1)q  = np+p−np+p+nq−q−np−q  = 2(p−q)  ∴((2nq+2np)/((n+1)p−(n−1)p+(n−1)q−(n+1)q))  = ((2n(p+q))/(2(p−q))) = ((n(p+q))/((p−q)))  please check

$$\left(\mathrm{n}+\mathrm{1}\right)\mathrm{p}−\left(\mathrm{n}−\mathrm{1}\right)\mathrm{p}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{q}−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{q} \\ $$$$=\:\mathrm{np}+\mathrm{p}−\mathrm{np}+\mathrm{p}+\boldsymbol{\mathrm{nq}}−\boldsymbol{\mathrm{q}}−\boldsymbol{\mathrm{np}}−\boldsymbol{\mathrm{q}} \\ $$$$=\:\mathrm{2}\left(\boldsymbol{\mathrm{p}}−\boldsymbol{\mathrm{q}}\right) \\ $$$$\therefore\frac{\mathrm{2nq}+\mathrm{2np}}{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{p}−\left(\mathrm{n}−\mathrm{1}\right)\mathrm{p}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{q}−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{q}} \\ $$$$=\:\frac{\mathrm{2n}\left(\mathrm{p}+\mathrm{q}\right)}{\mathrm{2}\left(\mathrm{p}−\mathrm{q}\right)}\:=\:\frac{\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)}{\left(\mathrm{p}−\mathrm{q}\right)} \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}} \\ $$$$ \\ $$

Answered by PRITHWISH SEN 2 last updated on 27/Sep/20

((n(p+q)+(p−q))/(n(p+q)−(p−q))) = ((p/q))^k   ∵p→q⇒(p−q)→0  ((n(p+q))/(n(p+q))) = ((p/q))^k   k=0 please check

$$\frac{\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)+\left(\mathrm{p}−\mathrm{q}\right)}{\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)−\left(\mathrm{p}−\mathrm{q}\right)}\:=\:\left(\frac{\mathrm{p}}{\mathrm{q}}\right)^{\mathrm{k}} \\ $$$$\because\mathrm{p}\rightarrow\mathrm{q}\Rightarrow\left(\mathrm{p}−\mathrm{q}\right)\rightarrow\mathrm{0} \\ $$$$\frac{\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)}{\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)}\:=\:\left(\frac{\mathrm{p}}{\mathrm{q}}\right)^{\mathrm{k}} \\ $$$$\mathrm{k}=\mathrm{0}\:\mathrm{please}\:\mathrm{check} \\ $$

Commented by ZiYangLee last updated on 27/Sep/20

But p is just approximately equal  to q, i think we cannot assume that  p is equal to q......hmmm

$${But}\:{p}\:{is}\:{just}\:{approximately}\:{equal} \\ $$$${to}\:{q},\:{i}\:{think}\:{we}\:{cannot}\:{assume}\:{that} \\ $$$${p}\:{is}\:{equal}\:{to}\:{q}......{hmmm} \\ $$

Commented by PRITHWISH SEN 2 last updated on 27/Sep/20

that is why I have written  p−q→0 not as p−q=0

$$\mathrm{that}\:\mathrm{is}\:\mathrm{why}\:\mathrm{I}\:\mathrm{have}\:\mathrm{written} \\ $$$$\mathrm{p}−\mathrm{q}\rightarrow\mathrm{0}\:\mathrm{not}\:\mathrm{as}\:\mathrm{p}−\mathrm{q}=\mathrm{0} \\ $$

Commented by PRITHWISH SEN 2 last updated on 27/Sep/20

now if p−q=ε  ε= a very small positive quantity  then n(p+q)+ε → n(p+q)−ε  ∴ ((n(p+q)+ε)/(n(p+q)−ε)) → 1   I think

$$\mathrm{now}\:\mathrm{if}\:\mathrm{p}−\mathrm{q}=\epsilon\:\:\epsilon=\:\mathrm{a}\:\mathrm{very}\:\mathrm{small}\:\mathrm{positive}\:\mathrm{quantity} \\ $$$$\mathrm{then}\:\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)+\epsilon\:\rightarrow\:\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)−\epsilon \\ $$$$\therefore\:\frac{\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)+\epsilon}{\mathrm{n}\left(\mathrm{p}+\mathrm{q}\right)−\epsilon}\:\rightarrow\:\mathrm{1}\:\:\:\mathrm{I}\:\mathrm{think} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com