Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 11563 by Nayon last updated on 28/Mar/17

if  f(x)=g(y)  then why (d/dx)(f(x))=(d/dy)(g(y))?

$${if}\:\:{f}\left({x}\right)={g}\left({y}\right) \\ $$$${then}\:{why}\:\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)? \\ $$

Commented by mrW1 last updated on 28/Mar/17

this is not always correct. but  (d/dx)(f(x))=(d/dy)(g(y))×(dy/dx)    let′s look at  x^2 =y^3 +1  (d/dx)(f(x))=2x  (d/dy)(g(y))=3y^2   (d/dx)(f(x))≠(d/dy)(g(y))

$${this}\:{is}\:{not}\:{always}\:{correct}.\:{but} \\ $$$$\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)×\frac{{dy}}{{dx}} \\ $$$$ \\ $$$${let}'{s}\:{look}\:{at} \\ $$$${x}^{\mathrm{2}} ={y}^{\mathrm{3}} +\mathrm{1} \\ $$$$\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\mathrm{2}{x} \\ $$$$\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)=\mathrm{3}{y}^{\mathrm{2}} \\ $$$$\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)\neq\frac{{d}}{{dy}}\left({g}\left({y}\right)\right) \\ $$

Commented by Nayon last updated on 28/Mar/17

mrw1 please ans the question id no.11571

$${mrw}\mathrm{1}\:{please}\:{ans}\:{the}\:{question}\:{id}\:{no}.\mathrm{11571} \\ $$

Answered by sma3l2996 last updated on 28/Mar/17

that not correct  the correct is :  if f(x)=g(y)  d(f(x))=d(g(y))⇔((d(f(x)))/dx)dx=((d(g(y)))/dy)dy

$${that}\:{not}\:{correct} \\ $$$${the}\:{correct}\:{is}\:: \\ $$$${if}\:{f}\left({x}\right)={g}\left({y}\right) \\ $$$${d}\left({f}\left({x}\right)\right)={d}\left({g}\left({y}\right)\right)\Leftrightarrow\frac{{d}\left({f}\left({x}\right)\right)}{{dx}}{dx}=\frac{{d}\left({g}\left({y}\right)\right)}{{dy}}{dy} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com