Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 115489 by ruwedkabeh last updated on 26/Sep/20

find range for  1. f(x)=((√(x^2 −9))/(x−1))  2. f(x)=ln ((√(4−9x^2 )))

$${find}\:{range}\:{for} \\ $$$$\mathrm{1}.\:{f}\left({x}\right)=\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}−\mathrm{1}} \\ $$$$\mathrm{2}.\:{f}\left({x}\right)=\mathrm{ln}\:\left(\sqrt{\mathrm{4}−\mathrm{9}{x}^{\mathrm{2}} }\right) \\ $$

Answered by PRITHWISH SEN 2 last updated on 26/Sep/20

1.  Let y= ((√(x^2 −9))/(x−1))  x^2 (y^2 −1)−2xy^2 +(y^2 +9)=0  for real x  △ = (2y^2 )^2 −4(y^2 −1)(y^2 +9)≥0  ⇒ (y−(3/(2(√2))))(y+(3/(2(√2))))≤0  Range f(x)∈ [−(3/(2(√2))) ,  (3/(2(√2))) ]  2.  Again let                  y = ln ((√(4−9x^2 )))         ⇒ e^(2y ) = 4−9x^2              x = ±(1/3)(√(4−e^(2y) ))        for x to be real            y ≤ ln 2    Range of f(x)∈ (−∞, ln 2]

$$\mathrm{1}.\:\:\mathrm{Let}\:\mathrm{y}=\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{9}}}{\mathrm{x}−\mathrm{1}} \\ $$$$\mathrm{x}^{\mathrm{2}} \left(\mathrm{y}^{\mathrm{2}} −\mathrm{1}\right)−\mathrm{2xy}^{\mathrm{2}} +\left(\mathrm{y}^{\mathrm{2}} +\mathrm{9}\right)=\mathrm{0} \\ $$$$\mathrm{for}\:\mathrm{real}\:\mathrm{x} \\ $$$$\bigtriangleup\:=\:\left(\mathrm{2y}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{y}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{y}^{\mathrm{2}} +\mathrm{9}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\:\left(\mathrm{y}−\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{2}}}\right)\left(\mathrm{y}+\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{2}}}\right)\leqslant\mathrm{0} \\ $$$$\boldsymbol{\mathrm{Range}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\in\:\left[−\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{2}}}\:,\:\:\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\right] \\ $$$$\mathrm{2}.\:\:\mathrm{Again}\:\mathrm{let}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\:=\:\mathrm{ln}\:\left(\sqrt{\mathrm{4}−\mathrm{9x}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\mathrm{e}^{\mathrm{2y}\:} =\:\mathrm{4}−\mathrm{9x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\:=\:\pm\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\mathrm{4}−\mathrm{e}^{\mathrm{2y}} }\:\: \\ $$$$\:\:\:\:\mathrm{for}\:\mathrm{x}\:\mathrm{to}\:\mathrm{be}\:\mathrm{real} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{y}\:\leqslant\:\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:\boldsymbol{\mathrm{Range}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\in\:\left(−\infty,\:\mathrm{ln}\:\mathrm{2}\right] \\ $$

Commented by ruwedkabeh last updated on 26/Sep/20

Thank you very much!

$${Thank}\:{you}\:{very}\:{much}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com